Viewport Size Code:
Login | Create New Account
picture

  MENU

About | Classical Genetics | Timelines | What's New | What's Hot

About | Classical Genetics | Timelines | What's New | What's Hot

icon

Bibliography Options Menu

icon
QUERY RUN:
HITS:
PAGE OPTIONS:
Hide Abstracts   |   Hide Additional Links
NOTE:
Long bibliographies are displayed in blocks of 100 citations at a time. At the end of each block there is an option to load the next block.

Bibliography on: Metagenomics

The Electronic Scholarly Publishing Project: Providing world-wide, free access to classic scientific papers and other scholarly materials, since 1993.

More About:  ESP | OUR CONTENT | THIS WEBSITE | WHAT'S NEW | WHAT'S HOT

ESP: PubMed Auto Bibliography 20 May 2025 at 01:31 Created: 

Metagenomics

While genomics is the study of DNA extracted from individuals — individual cells, tissues, or organisms — metagenomics is a more recent refinement that analyzes samples of pooled DNA taken from the environment, not from an individual. Like genomics, metagenomic methods have great potential in many areas of biology, but none so much as in providing access to the hitherto invisible world of unculturable microbes, often estimated to comprise 90% or more of bacterial species and, in some ecosystems, the bulk of the biomass. A recent describes how this new science of metagenomics is beginning to reveal the secrets of our microbial world: The opportunity that stands before microbiologists today is akin to a reinvention of the microscope in the expanse of research questions it opens to investigation. Metagenomics provides a new way of examining the microbial world that not only will transform modern microbiology but has the potential to revolutionize understanding of the entire living world. In metagenomics, the power of genomic analysis is applied to entire communities of microbes, bypassing the need to isolate and culture individual bacterial community members.

Created with PubMed® Query: ( metagenomic OR metagenomics OR metagenome ) NOT pmcbook NOT ispreviousversion

Citations The Papers (from PubMed®)

-->

RevDate: 2025-05-19
CmpDate: 2025-05-19

Peek J, Bhattacharjee A, Burian J, et al (2025)

Environmental resistome-guided development of resistance-tolerant antibiotics.

Proceedings of the National Academy of Sciences of the United States of America, 122(21):e2504781122.

Failure to anticipate new forms of antibiotic resistance has led to resistance developing rapidly to virtually all antibiotics that have entered clinical use. Many of the most problematic types of resistance originated in the environment, where ancient arms races between antibiotic-producing microbes and their competitors have created vast arsenals of antibiotics and resistance. Seizing on the knowledge that resistance in nature is frequently a harbinger of future clinical resistance, we propose introducing an additional step into the antibiotic development process that exploits the susceptibility of development candidates to environmental resistance as a metric for prioritizing lead compounds and as a roadmap for their structural optimization. Using the antibiotic albicidin as a model, we show how the environmental resistome can guide the development of more resistance-tolerant leads. We used metagenomic surveys to identify resistance vulnerabilities for albicidin and guide the synthesis of analogs that evade the resistance threats. We found that natural albicidin analogs (congeners) were especially enriched in structural features that escape resistance, which inspired our syntheses and provided compelling evidence for the evolution of families of antibiotics in response to resistance in nature. The coupling of metagenomics-based resistance surveillance with structural optimizations of new antibiotics is a broadly applicable approach that is easily integrated into antibiotic development programs to generate compounds that are more resilient in the face of resistance.

RevDate: 2025-05-19

Lei Z, Wang H, Zhang H, et al (2025)

Sultr1;2-Mediated Recruitment of Selenium-Oxidizing Bacteria Promotes Plant Selenium Uptake.

Journal of agricultural and food chemistry [Epub ahead of print].

Plants can shape their root microbiome to promote growth and selenium uptake. Here, we used metagenomics, 16S high-throughput sequencing, and liquid chromatography-mass spectrometry (LC-MS) metabolomics assays to investigate the role of Sultr1;2, which is the major selenium transporter gene, in recruiting microbial communities to regulate soil selenium bioavailability and plant selenium uptake. Results shows that the overexpression of Sultr1;2 in tomato significantly enriched Methylobacterium genus. The isolated strains of Methylobacterium possess multiple plant-growth-promoting functions and selenium oxidation capability and inoculation with these strains increases soil selenium availability. The upregulated metabolites of Sultr1;2-overexpressing tomato were significantly enriched in the arginine and proline metabolism pathway. The key upregulated metabolites significantly improved the growth rate and selenium-oxidizing ability of Methylobacterium strains, and the combined addition of key upregulated metabolites and synthetic microbial community significantly increased soil selenium bioavailability and plant selenium uptake. This study provides insights into leveraging plant genetic engineering to identify key functional microbial communities for sustainable selenium-rich agricultural development.

RevDate: 2025-05-19
CmpDate: 2025-05-19

Kohnert E, C Kreutz (2025)

Benchmarking Differential Abundance Tests for 16S microbiome sequencing data using simulated data based on experimental templates.

PloS one, 20(5):e0321452 pii:PONE-D-24-40619.

Differential abundance (DA) analysis of metagenomic microbiome data is essential for understanding microbial community dynamics across various environments and hosts. Identifying microorganisms that differ significantly in abundance between conditions (e.g., health vs. disease) is crucial for insights into environmental adaptations, disease development, and host health. However, the statistical interpretation of microbiome data is challenged by inherent sparsity and compositional nature, necessitating tailored DA methods. This benchmarking study aims to simulate synthetic 16S microbiome data using metaSPARSim (Patuzzi I, Baruzzo G, Losasso C, Ricci A, Di Camillo B. MetaSPARSim: a 16S rRNA gene sequencing count data simulator. BMC Bioinformatics. 2019;20:416. https://doi.org/10.1186/s12859-019-2882-6 PMID: 31757204) MIDASim (He M, Zhao N, Satten GA. MIDASim: a fast and simple simulator for realistic microbiome data. Available from: https://doi.org/10.1101/2023.03.23.533996), and sparseDOSSA2 (Ma S, Ren B, Mallick H, Moon YS, Schwager E, Maharjan S, et al. A statistical model for describing and simulating microbial community profiles. PLOS Comput Biol. 2021;17(9):e1008913. https://doi.org/10.1371/journal.pcbi.1008913 PMID: 34516542) , leveraging 38 real-world experimental templates (S3 Table) previously utilized in a benchmark study comparing DA tools. These datasets, drawn from diverse environments such as human gut, soil, and marine habitats, serve as the foundation for our simulation efforts. We employ the same 14 DA tests that were previously used with the same experimental data in benchmark studies alongside 8 DA tests that were developed subsequently. Initially, we will generate synthetic data closely mirroring the experimental datasets, incorporating a known truth to cover a broad range of real-world data characteristics. This approach allows us to assess the ability of DA methods to recover known true differential abundances. We will further simulate datasets by altering sparsity, effect size, and sample size, thus creating a comprehensive collection for applying the 22 DA tests. The outcomes, focusing on sensitivities and specificities, will provide insights into the performance of DA tests and their dependencies on sparsity, effect size, and sample size. Additionally, we will calculate data characteristics (S1 and S2 Table) for each simulated dataset and use a multiple regression to identify informative data characteristics influencing test performance. Our prior study, where we used simulated data without incorporating a known truth, demonstrated the feasibility of using synthetic data to validate experimental findings. This current study aims to enhance our understanding by systematically evaluating the impact of known truth incorporation on DA test performance, thereby providing further information for the selection and application of DA methods in microbiome research.

RevDate: 2025-05-19
CmpDate: 2025-05-19

Wang S, Kong F, Dai D, et al (2025)

Deterministic succession patterns in the rumen and fecal microbiome associate with host metabolic shifts in peripartum dairy cattle.

GigaScience, 14:.

BACKGROUND: Metabolic disorders in peripartum ruminants affect health and productivity, with gut microbiota playing a key role in host metabolism. Therefore, our study aimed to characterize the gut microbiota of peripartum dairy cows to better understand the relationship between metabolic phenotypes and the rumen and fecal microbiomes during the peripartum period.

RESULTS: In a longitudinal study of 91 peripartum cows, we analyzed rumen and fecal microbiomes via 16S rRNA and metagenomic sequencing across six time points. By using enterotype classification, ecological model, and random forest analysis, we identified distinct deterministic succession patterns in the rumen and fecal microbiomes (rumen: rapid transition-transition-stable; hindgut: stable-transition-stable). Key microbes, such as Succiniclasticum and Bifidobacterium, were found to drive microbial succession by balancing stochastic and deterministic processes. Notably, we observed that changes in gut microbiota succession patterns significantly influenced metabolic phenotypes (e.g., serum non-esterified fatty acid, glucose, and insulin levels). Mediation analysis suggested that specific gut microbes (e.g., Prevotella sp900315525 in the rumen and Alistipes sp015059845 in the hindgut) and metabolic pathways (e.g., glucose-related pathway) were associated with host metabolic phenotypes.

CONCLUSIONS: Overall, utilizing a large gut microbiome dataset and enterotype- and ecological model-based microbiome analyses, we comprehensively elucidated the succession and assembly of the gut microbiota in peripartum dairy cows. We further confirmed that changes in gut microbiota succession patterns were significantly related to the metabolic phenotypes of peripartum dairy cows. These findings provide valuable insights for developing health management strategies for peripartum ruminants.

RevDate: 2025-05-19
CmpDate: 2025-05-19

Bonacolta AM, Krause-Massaguer J, Unuma T, et al (2025)

The Sea Cucumber-Infecting Parasite Apostichocystis gudetama gen. nov. sp. nov. Expands Marine-Host-Specific Clade of Apicomplexans.

The Journal of eukaryotic microbiology, 72(3):e70013.

Unknown ellipsoid bodies, later classified as apicomplexan cysts, are prevalent in the ovaries of Japanese sea cucumbers (Apostichopus japonicus), where they can lead to lower fecundity in infected individuals and adverse effects on wild populations as well as aquaculture efforts for this endangered species. Apicomplexans are widespread and essential to marine environments, where they can affect the health and fitness of host populations. We performed genomic sequencing of recovered cysts to gain more ecological and evolutionary information on this parasite. We recovered this apicomplexan's complete nuclear ribosomal RNA (rrn) operon, the entire mitochondrial genome, and a partial apicoplast (relic chloroplast) genome. The rrn operon phylogeny revealed this parasite as being closely related to coccidian-like parasites of marine fish (ichthyocolids) and cnidarians (corallicolids), while organelle phylogenomics hint at a closer relation to the protococcidian Eleutheroschizon. Using this new phylogenetic context and previous morphological descriptions, we describe this parasite as Apostichocystis gudetama gen. nov. sp. nov. Mining available microbiomes reveal the presence of Apostichocystis spp. beyond its host range, alluding to other potential hosts or cryptic, closely related lineages. Its phylogenetic placement has important implications concerning the evolution of parasitism within Apicomplexa and the divergence of a marine-host-specific clade of coccidian-like parasites.

RevDate: 2025-05-19

Rahimlou S, Amend AS, TY James (2025)

Malassezia in environmental studies is derived from human inputs.

mBio [Epub ahead of print].

UNLABELLED: The fungus Malassezia is the most prevalent member of the human skin mycobiota, known for its lipid dependence and inability to synthesize long-chain fatty acids. Malassezia exhibits remarkable niche breadth, inhabiting soils, dust, as well as various marine environments from polar regions to deep-sea vents. The consistent presence of Malassezia in marine habitats, including those associated with marine animals, suggests that the fungus is able to grow and play a fundamental role in marine ecosystems. In this study, we explored metagenomic sequences from the Sequence Read Archive database to investigate the presence, distribution, and origins of Malassezia species within marine ecosystems, with the goal of assembling Malassezia genomes. Using various search methods, we found that up to 10% of the shotgun and amplicon data sets analyzed contained Malassezia sequences. However, the relative abundance of Malassezia in each data set was low, and there was a strong correlation between human and Malassezia sequences in marine environments, consistent with contamination. From the most Malassezia-rich data sets, we attempted to generate metagenome-assembled genomes. However, Malassezia contigs together showed low genome completeness levels, with a maximum of 2.2% in a sample. Phylogenetic analysis identified the contigs as closely related to human-associated Malassezia globosa and Malassezia restricta, along with Malassezia sympodialis and Malassezia pachydermatis, which were the most prevalent species across all studied environments. Our data suggest that many observations of Malassezia in the environment are derived from human sources and that widespread contamination confounds the exploration of Malassezia diversity and ecological role in the marine environment.

IMPORTANCE: Malassezia is the singular fungus most associated with humans. It colonizes mammalian skin and requires host-derived fatty acids to grow. Widespread sequencing of environmental DNA surprisingly showed that Malassezia is also ubiquitous outside of mammalian hosts. Malassezia is frequently found in marine habitats where it is associated with corals, deep sea vents, diatoms, and more. Given its widespread presence, we reasoned that public metagenomic data could be used to assemble a genome sequence of an uncultured marine Malassezia. However, we found that Malassezia was ubiquitous but never abundant in marine samples and that the few metagenomes we could assemble were consistent with recent human introduction. We also found that the presence of human DNA in sequencing data sets is strongly correlated with the presence of Malassezia DNA, and while not ruling out the growth and survival of Malassezia in marine habitats, they suggest widespread contamination of public data with Malassezia.

RevDate: 2025-05-19

Lei Z, Zhang H, Liu W, et al (2025)

Dynamic and Stable Core Microbiota Assist Plants in Enriching Selenium and Reducing Cadmium Absorption.

Advanced science (Weinheim, Baden-Wurttemberg, Germany) [Epub ahead of print].

Rhizosphere microbiome is crucial for regulating rhizosphere complex nutrient dynamics. However, mechanisms by which plants regulate rhizosphere microbes to manage nutrient availability under coexisting beneficial and harmful elements remain unclear. This study focuses on the rhizosphere microbiome of Brassica napus in different naturally selenium (Se)-cadmium (Cd)-rich soils, the functionality of this rhizosphere, and the changes in the availability of rhizosphere nutrients. Microbiome analysis, metagenomics, genomic analysis, strain isolation, and functional validation are performed to investigate these relationships. Results show that a significant negative correlation is observed between the rhizosphere available Se and Cd content across the plant whole growth cycle and identified a group of core microbiota that are highly positively correlated with available Se and negatively correlated with available Cd. Genomics and metagenomics analyses reveal that the core microbiota has a higher substrate preference for amino acids related to the glutathione metabolic pathway. Key glutathione-related-amino acids and synthetic microbial community significantly improve the expression of glutathione anabolism and related amino acid transport genes and enhance Se uptake and reduce Cd absorption in plants grown in various Se-Cd-rich soils. This study provides insights into the mechanisms of root-associated microbes responding to complex soil nutrients during plant growth.

RevDate: 2025-05-19

Steriade C, Thomas SC, Xu F, et al (2025)

Patients with status epilepticus and new-onset refractory status epilepticus display drastically altered fecal microbiomes compared to chronic epilepsy patients.

Epilepsia [Epub ahead of print].

OBJECTIVE: New-onset refractory status epilepticus (NORSE) occurs in people without pre-existing epilepsy or a rapidly identified structural, toxic, metabolic, or other cause. NORSE is a rare disorder with high morbidity and mortality rates and limited evidence for effective therapies. We aimed to assess whether the gut microbiome of NORSE and status epilepticus (SE) differs from that of chronic epilepsy, whether NORSE differs from SE at different disease time points, and to examine the correlations between specific gut microbiota and cytokines in NORSE and SE.

METHODS: This longitudinal cohort study observed patients with NORSE (n = 15), SE (n = 17), and chronic epilepsy who were not in SE (n = 12). NORSE patients were recruited through the NORSE Consortium. Patients with NORSE and SE underwent longitudinal serial biospecimen collection. Fecal samples were subjected to whole-community shotgun metagenomics to characterize microbiome features. Cohorts were evaluated for prokaryotic, eukaryotic, and functional diversity. Correlations between blood inflammatory cytokine levels and microbiome features and covariate analysis with critical illness and clinical treatments were examined for NORSE and SE patients during and after SE resolution.

RESULTS: During SE, NORSE and SE patients had significantly different prokaryotic, eukaryotic, and functional microbiome levels compared to chronic epilepsy patients without SE. Limited microbiome differences were observed within and between NORSE and SE, although these groups displayed differing correlation patterns between microbial species and cytokines. Patients who later died or were tube-fed harbored significantly different microbiomes than those who survived or were orally fed.

SIGNIFICANCE: NORSE and SE patients present with a more variable and dramatically different fecal microbiome than chronic epilepsy patients, which may indicate gut dysbiosis that may be reciprocally linked to inflammatory responses. Although NORSE and SE patients had similar microbiome structures, fungal and bacterial correlates with inflammatory cytokines differed between NORSE and SE, with confounding factors influencing microbiome structure. Our data suggest a microbiome-specific response to NORSE and SE, with implications for future treatment strategies.

RevDate: 2025-05-19
CmpDate: 2025-05-19

Lin Y, Shi X, Mu J, et al (2025)

Uncovering stage-specific neural and molecular progression in Alzheimer's disease: Implications for early screening.

Alzheimer's & dementia : the journal of the Alzheimer's Association, 21(5):e70182.

INTRODUCTION: Understanding molecular, neuroanatomical, and neurophysiological changes in cognitive decline is crucial for comprehending Alzheimer's disease (AD) progression and facilitating objective staging and early screening.

METHODS: We enrolled 277 participants and employed a multimodal approach, integrating genomics, metagenomics, metabolomics, magnetic resonance imaging (MRI), and electroencephalogram (EEG) to investigate the AD continuum, from subjective cognitive decline (SCD) through mild cognitive impairment (MCI) to advanced AD.

RESULTS: Key markers and mechanisms were identified for each stage: initial neurophysiological deficits in SCD with compensatory metabolomic responses, gut-brain axis dysregulation in MCI, and extensive metabolic disruption and multisystem breakdown in AD. Using random forest models, we identified specific feature combinations that achieved predictive areas under the curve (AUCs) of 0.78 for SCD, 0.84 for MCI, and 0.98 for AD, highlighting EEG as a particularly effective early screening tool.

DISCUSSION: This study elucidates AD's pathophysiological progression and highlights the potential of machine learning-assisted multimodal strategies for early detection and staging.

HIGHLIGHTS: Early electroencephalogram (EEG) changes and compensatory metabolomic responses define subjective cognitive decline (SCD) stage. In mild cognitive impairment (MCI), gut-brain axis dysfunction alters microbial diversity and functional pathways. In Alzheimer's disease (AD), systemic breakdown disruption enables near-perfect machine learning (ML) detection. Random forest models yield predictive areas under the curve (AUCs) of 0.78 (SCD), 0.84 (MCI), 0.98 (AD). EEG is a convenient, cost-efficient marker for early screening.

RevDate: 2025-05-19

George UE, De Coninck L, George OA, et al (2025)

Identification and Genomic Characterization of Known and Novel Highly Divergent Sapoviruses in Frugivorous and Insectivorous Bats in Nigeria.

EMI. Animal & environment [Epub ahead of print].

Sapovirus (SaV) infections have been linked with moderate-to-severe acute gastroenteritis (AGE) in animals and humans and represent a significant risk to public health. SaVs from animals including pigs, chimpanzees, and rodents have been reported to be closely related with human SaVs, indicating the possibility of cross-species transmission. Divergent SaVs have been reported in various bat species across various continents including Asia, Europe, Oceania and Africa. However, little is known about the evolutionary history of SaVs across various bat species and their zoonotic potential. In this report, we describe the findings of a surveillance study across various bat species in Nigeria. Samples were pooled and subjected to metagenomics sequencing and analyses. Nine of 57 sample pools (containing 223 rectal swabs from five bat species) had SaV reads from which we assembled a total of four complete and three near-complete (having complete coding sequences) genomes. The bat SaV (BtSaV) strains from this study formed five distinct lineages of which four represented novel genogroups. BtSaV lineages clustered mainly according to bat families, which might suggest a likely virus-host-specific evolution. The BtSaV VP1 capsid protein structure prediction confirmed three main domains (S, P1, and P2) as reported for Human SaV (HuSaV). We found that the P2 subdomain of the VP1 protein contains a degree of homology to known immunoreactive epitopes suggesting these conserved regions may be valuable for diagnostics or medical countermeasure development. This study expands our understanding of reservoir hosts, provides information on the genetic diversity and continuous evolution of SaVs in bats.

RevDate: 2025-05-19

Geonczy SE, Ter Horst AM, JB Emerson (2025)

Soil viral communities shifted significantly after wildfire in chaparral and woodland habitats.

ISME communications, 5(1):ycaf073.

Increased wildfire activity warrants more research into fire-driven biotic changes in soil, including soil viral communities, given the roles of soil microbes in organic matter decomposition, nutrient cycling, and post-fire recovery. Leveraging viral size-fraction metagenomes (viromes), here we studied viral community responses to wildfire in woodland and chaparral soils at five timepoints over 1 year following the California LNU Complex wildfire. We also compared post-fire samples to unburned controls at the final three timepoints and leveraged published viromes from the same sites nine months before the fire as pre-burn controls. Viral community composition differed significantly in burned samples compared to controls from both habitats, as did soil chemistry and prokaryotic communities (16S rRNA gene amplicons). Viromic DNA yields (a proxy for viral particle abundances) indicated initial viral biomass reductions due to the fire, but a return to baseline abundances (indistinguishable from controls) within five months. Fire-associated habitat filtering was further indicated by a comparison to the PIGEON viral "species" (viral operational taxonomic unit (vOTU)) reference database, with vOTUs from a burned conifer forest representing 19%-31% of PIGEON vOTUs detected in the burned habitats but only 0.6%-6% in controls. Together, these results indicate significant changes in soil viral communities due to wildfire, attributable at least in part to concomitant changes in their prokaryotic host communities and soil physicochemistry.

RevDate: 2025-05-19
CmpDate: 2025-05-19

Que T, Li W, Zhang Z, et al (2025)

HPD-Kit: a comprehensive toolkit for pathogen detection and analysis.

Frontiers in cellular and infection microbiology, 15:1580165.

INTRODUCTION: Unbiased metagenomic sequencing (mNGS) is crucial for infectious disease diagnosis and epidemiological surveillance. However, its analysis requires specialized bioinformatics skills, creating barriers for clinicians. We developed HPD-Kit (Henbio Pathogen Detection Toolkit) with an integrated pathogen database to simplify pathogen detection and analysis for both human and animal pathogens.

METHODS: HPD-Kit includes a specifically curated pathogen database and optimized bioinformatics pipeline. We evaluated its performance using simulated datasets at varying pathogen abundances and clinical samples. The toolkit provides both open-source software and a web interface for streamlined one-click analysis.

RESULTS: Validation with simulated data showed HPD-Kit maintains high detection accuracy even at low pathogen abundance. Clinical dataset analysis demonstrated superior pathogen identification compared to conventional methods. The web interface retained this performance while significantly improving usability.

DISCUSSION: HPD-Kit effectively addresses the bioinformatics barrier in mNGS analysis while maintaining high accuracy. Its dual open-source and web-based implementation facilitates clinical and public health applications, promoting wider adoption of mNGS technology in diagnostic settings.

RevDate: 2025-05-19

Oehler JB, Burns K, Warner J, et al (2025)

Long-Read Sequencing for the Rapid Response to Infectious Diseases Outbreaks.

Current clinical microbiology reports, 12(1):10.

PURPOSE OF REVIEW: Long-read sequencing (LRS) has revolutionized pathogen surveillance by enabling real-time, high-fidelity genomic analysis critical for outbreak response. This review synthesizes recent breakthroughs in LRS, evaluating its impact on genomic epidemiology, metagenomics, and public health decision-making while addressing limitations and prospects for integrating LRS into global outbreak surveillance.

RECENT FINDINGS: Unlike short-read sequencing, LRS-pioneered by Oxford Nanopore Technologies (ONT) and Pacific Biosciences (PacBio)-resolves complex genomic structures, antimicrobial resistance determinants, and transmission dynamics with unprecedented accuracy. The portability of some LRS devices has facilitated rapid pathogen identification in field settings, notably during the Ebola and COVID-19 pandemics. Despite advancements in basecalling algorithms and target enrichment, challenges including sequencing errors, computational bottlenecks, and cost barriers remain.

SUMMARY: By critically evaluating recent findings and discussing future directions, this review highlights the importance of leveraging LRS for outbreak preparedness and response, equipping researchers and public health professionals with the knowledge necessary to navigate the complexities of modern infectious disease challenges.

RevDate: 2025-05-19

Deng C, Hong L, Sun D, et al (2025)

Diagnosis of Mycoplasma Hominis Peritonitis in a CAPD Patient with Metagenomic Next-Generation Sequencing: A Case Report.

Infection and drug resistance, 18:2469-2473.

BACKGROUND: Mycoplasma hominis (Mh) is a conditional pathogenic microorganism in humans, typically colonizing the genitourinary tract of adults and causing infections in this system. However, Mh is rarely reported as a causative agent of peritoneal dialysis (PD)-associated peritonitis.

CASE PRESENTATION: A 46-year-old woman undergoing maintenance PD presented with abdominal pain and cloudy PD effluent. Her PD modality is continuous ambulatory peritoneal dialysis (CAPD). Cultures of the PD effluent and blood were negative, and empirical antibiotic therapy was ineffective, leading to a diagnosis of refractory peritonitis. Metagenomic next-generation sequencing (mNGS) detected Mh in the PD effluent. Treatment was adjusted to intraperitoneal (IP) clindamycin combined with intravenous drip(ivdrip) moxifloxacin, resulting in complete recovery.

CONCLUSION: Patients with culture-negative PD-associated peritonitis or refractory peritonitis should be evaluated for potential Mh infection. mNGS enables rapid detection of pathogens that traditional methods may fail to identify. A combination of moxifloxacin and clindamycin is effective for treating PD-associated peritonitis caused by Mh.

RevDate: 2025-05-19

Rivera I, Harlow K, Cole RN, et al (2025)

A metaproteomic analysis of the piglet fecal microbiome across the weaning transition.

Frontiers in microbiology, 16:1504433.

Microbiome analysis has relied largely on metagenomics to characterize microbial populations and predict their functions. Here, we used a metaproteomic analysis of the fecal microbiome in piglets before and after weaning to compare protein abundances as they pertain to microbial populations specific to either a milk- or plant-based diet. Fecal samples were collected from six piglets on the day of weaning and 4 weeks after transitioning to a standard nursery diet. Using the 12,554 protein groups identified in samples, we confirmed the shift in protein composition that takes place in response to the microbial succession following weaning and demonstrated the redundancy in metabolic processes between taxa. We identified taxa with roles as primary degraders based on corresponding proteins synthesized, thereby providing evidence for cross-feeding. Proteins associated with the breakdown of milk-specific carbohydrates were common among pre-weaned pigs, whereas the proteome of post-weaned piglets contained a greater abundance of proteins involved in the breaking down plant-specific carbohydrates. Furthermore, output revealed that production of propionate takes place via the propionaldehyde pathway in pre-weaned piglets, but changes to production via the succinate pathway in post-weaned piglets. Finally, a disproportionate quantity of carbohydrate-active enzymes (CAZymes) (~8%) were produced by fungi, which typically only represent ~0.1% of the microbiome taxa. Information gathered through this characterization of the metaproteome before and after weaning revealed important differences regarding the role of members in the microbial community, thereby providing information for the optimization of diets and products for both piglet and microbiome health.

RevDate: 2025-05-18

Merrick B, Prossomariti D, Allen E, et al (2025)

Faecal microbiota transplant to ERadicate gastrointestinal carriage of Antibiotic-Resistant Organisms (FERARO): a feasibility randomised controlled trial.

The Journal of infection pii:S0163-4453(25)00098-2 [Epub ahead of print].

OBJECTIVES: The gastrointestinal tract (GIT) is a reservoir of multidrug-resistant organisms (MDRO). Colonisation with MDRO precedes invasive infections which can be challenging to treat with excess morbidity and mortality compared to antimicrobial susceptible infections. Currently, there are no effective GIT decolonisation strategies. Whilst Faecal Microbiota Transplant (FMT) has emerged as a potential therapeutic, there remains uncertainty about its feasibility, safety and efficacy.

METHODS: Population: Patients with invasive infection with Extended-spectrum Beta-Lactamase (ESBL-) or Carbapenem-resistant Enterobacterales (CRE) and persistent GIT carriage.

INTERVENTION: Three doses of encapsulated lyophilised FMT.

COMPARATOR: Matched placebo capsules.

OUTCOMES: Primary outcome was participant consent rate as a proportion of those approached to be screened for GIT carriage of ESBL-E/CRE. Secondary outcomes were additional feasibility, safety and tolerability, and efficacy metrics. Exploratory outcomes included stool metagenomic analysis.

RESULTS: Of 460 approached individuals, 124 (27%) consented. 53/124 participants (43%) fulfilled all eligibility criteria. 44/53 (83%) of those eligible were randomised and 41/44 (93%) received investigational medicinal product (IMP): 20 FMT and 21 placebo. 39/41 (95%) completed IMP dosing. Abdominal bloating and skin and subcutaneous tissue disorders were more common following FMT but there were no unanticipated harms. MDRO carriage decreased over time across arms but was lower at all time points in the FMT arm. FMT increased microbiome diversity and microbiome-based health measures. FMT recipients' samples clustered into two groups with those with more dissimilar community composition to donors more likely to decolonise post-FMT (3/5 vs. 0/12, p=0.01). Patients that decolonised exhibited a trend towards increased proportional representation of donor-derived strains in their post-FMT samples (p=0.05) and change in strain dominance within MDRO at species-level.

CONCLUSIONS: Progression to a substantive trial is feasible with modifications to the existing FERARO protocol. FMT was safe, well tolerated, and acceptable to patients colonised with MDRO. Microbiome analysis infers that greater donor-recipient microbiome dissimilarity at baseline and higher rates of donor-derived strain engraftment favour MDRO decolonisation, which in turn maybe facilitated by conspecific strain replacement.

RevDate: 2025-05-18

Zhang G, Hu M, Wang X, et al (2025)

Self-regulatory mechanisms of anammox system in response to CuO nanoparticles revealed by microbial ecological networks and metagenomics.

Bioresource technology pii:S0960-8524(25)00648-0 [Epub ahead of print].

Anaerobic ammonia oxidation (Anammox) has attracted widespread attention as an advanced biological nitrogen removal technology. CuO nanoparticles (CuO NPs) is one of the most common nanomaterials widely used in industrial production. In this study, microbial network construction, metagenomics and binning analysis were integrated to elucidate the impact of CuO NPs on anammox system. Nitrogen removal efficiency initially fluctuated but eventually stabilized after the addition of 1 mg/L CuO NPs. Network analysis revealed a significant increase in cooperative associations between anammox bacteria (AnAOB: Candidatus_Kuenenia, Candidatus_Jettenia, and Candidatus_Brocadia) and Chloroflexi from 0 % to 75 %. Metagenomic and binning analysis elucidated the intricate metabolic interactions between AnAOB and Chloroflexi, particularly in the biosynthesis of polysaccharide, protein, and cofactors.The collaboration between AnAOB and Chloroflexi was crucial for maintaining the ecological balance of the community structure under CuO NPs stress in anammox system.

RevDate: 2025-05-18

Miao S, Zhang Y, Wu L, et al (2025)

Resistance induction potency assessment of antibiotic production wastewater and associated resistome shaping mechanisms.

Water research, 283:123811 pii:S0043-1354(25)00720-1 [Epub ahead of print].

Antibiotic production wastewater (APW) contains multiple substances known to select for and facilitate horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs); however, whether these substances can induce the evolution of antibiotic resistance in real wastewater environments and the fate of such resistance induction potency during the treatment process are poorly understood, nor are its relationship with wastewater quality parameters and function in shaping the antibiotic resistome. In this study, the impacts of filter-sterilized APW and municipal wastewater on the resistance selection of Escherichia coli and the transfer dynamics of conjugative RP4 plasmid-borne ARGs across indigenous sludge communities were evaluated. The resistance development and transfer processes were accelerated in APW owing to enhanced growth inhibition, oxidative stress, and membrane permeability, with antibiotic concentrations much lower than their minimum inhibition concentrations. The effects were reduced simultaneously with the removal of COD and NH3N, but APW effluents still exhibited significant resistance induction potency with wastewater quality parameters meeting discharge standards. In contrast, municipal wastewater did not result in any detectable changes. Based on the metagenomic assembly and binning, stronger resistance induction potency in the antibiotic production wastewater treatment plant endowed indigenous sludge and effluent with greater accumulation, genetic mobility, and pathogenic accessibility of ARGs than in the municipal wastewater treatment plant. Antibiotic resistome assembly was determined primarily by deterministic processes, driven jointly by resistance induction potency, mobilome variance, and microbiome shifts. These results provide novel insights into the application of bioassays to comprehensively evaluate the antibiotic resistance induction effects of APW and their relationships with the resistome to manage risks during the treatment process.

RevDate: 2025-05-19
CmpDate: 2025-05-17

Zhang S, Fu Y, Fang L, et al (2025)

Psittacosis pneumonia with the reversed halo sign: a case report and literature review.

BMC infectious diseases, 25(1):717.

BACKGROUND: Chlamydia psittaci is a rare pathogen that causes community-acquired pneumonia. The reversed halo sign (RHS) is a computed tomography (CT) finding that is commonly observed in diseases such as cryptogenic organizing pneumonia, invasive fungal infections, tuberculosis, sarcoidosis, and pulmonary thromboembolism, but has seldom been described in association with psittacosis pneumonia.

CASE PRESENTATION: We report a case in which a 26-year-old man with a history of close contact with pigeons and chicken manure presented with fever and cough for 6 days. A CT examination revealed the RHS in the right lower lobe of the lung. Psittacosis pneumonia was diagnosed by metagenomic next-generation sequencing of the patient's bronchoalveolar lavage fluid. Treatment with omadacycline abolished his symptoms. We also discuss six other cases of psittacosis pneumonia with the RHS identified by literature search.

CONCLUSIONS: When clinicians encounter patients with atypical pneumonia with the RHS and a history of contact with poultry, psittacosis should be considered.

RevDate: 2025-05-17
CmpDate: 2025-05-17

Yang Q, Downey R, Stark JS, et al (2025)

The Microbial Ecology of Antarctic Sponges.

Microbial ecology, 88(1):44.

Microbial communities in Antarctic marine sponges have distinct taxonomic and functional profiles due to low temperatures, seasonal days and nights, and geographic isolation. These sponge holobionts contribute to nutrient cycling, structural habitat formation, and benthic ecosystem resilience. We review Antarctic sponge holobiont knowledge, integrating culture-based and molecular data across environmental and taxonomic gradients. Although microbiome data exist for only a fraction of the region's 593 known sponge species, these hosts support diverse symbionts spanning at least 63 bacterial, 5 archaeal, and 6 fungal phyla, highlighting the complexity and ecological significance of these understudied polar microbiomes. A conserved core microbiome, dominated by Proteobacteria, Bacteroidetes, Nitrospinae, and Planctomycetes, occurs across Antarctic sponges, alongside taxa shaped by host identity, depth, and environment. Metagenomic data indicate microbial nitrogen cycling, chemoautotrophic carbon fixation, and stress tolerance. Despite these advances, major knowledge gaps remain, particularly in deep-sea and sub-Antarctic regions, along with challenges in taxonomy, methodological biases, and limited functional insights. We identify key research priorities, including developing standardised methodologies, expanded sampling across ecological and depth gradients, and integrating multi-omics with environmental and host metadata. Antarctic sponge holobionts provide a tractable model for investigating microbial symbiosis, functional adaptation, and ecosystem processes in one of Earth's most rapidly changing marine environments.

RevDate: 2025-05-17
CmpDate: 2025-05-17

Schilling M, Jagdev M, Thomas H, et al (2025)

Metagenomic analysis of mosquitoes from Kangerlussuaq, Greenland reveals a unique virome.

Scientific reports, 15(1):17141.

Climate change is dramatically affecting vector ecology in extreme environments such as the Arctic. However, little is known about the current status of viruses of arthropod vectors located in such northerly locations. As part of a field survey on the role of wildlife in international movement of zoonotic pathogens, we sampled mammalophilic mosquitoes near the settlement of Kangerlussuaq, Greenland in July 2022 and July 2023 to investigate their virome. The majority of mosquitoes were identified as either Aedes impiger or Aedes nigripes. Metagenomic analysis of RNA extracted from species pools detected a number of novel RNA viruses belonging to a range of different virus families, including Flaviviridae, Orthomyxoviridae, Bunyavirales, Totiviridae and Rhabdoviridae. However, the sequence identities when compared to previously published, were as low as 34% at the amino acid level. Furthermore, a comparison of virome diversity between Aedes species emphasises the uniqueness of both Aedes impiger and Aedes nigripes from this secluded ecosystem. It also highlights the need to better understand the viromes of potential pathogen vectors as the impacts of climate change are experienced in such northerly ecosystems.

RevDate: 2025-05-17
CmpDate: 2025-05-17

Zhang Z, Ran X, Guo Z, et al (2025)

Microbial diversity, functional properties, and flavor characteristics of high-temperature Daqu with different colors.

Food research international (Ottawa, Ont.), 212:116406.

High-temperature Daqu (HTD) plays a crucial role in the quality of sauce-flavor baijiu. Daqu of different colors serves distinct functions in the baijiu brewing process. However, indicators for distinguishing among different-colored Daqu remain insufficient. This study investigated the microbial community structures, physicochemical properties, and E-sensory characteristics of different-colored HTD from Shandong Province. The results revealed significant differences in microbial communities among the three HTD types (P < 0.05). Kroppenstedtia eburnea, three Bacillus species, and Weizmannia coagulans were significantly enriched in white Daqu; an unclassified Staphylococcus species dominated in black Daqu; and Aspergillus oryzae, Aspergillus fumigatus, and Proteus mirabilis were highly abundant in yellow Daqu. Compared to HTD from Guizhou and Hubei, Shandong HTD was characterized by microbial species such as Proteus mirabilis and Bacillus velezensis. Using metagenomic analysis, we, for the first time, identified Thermomyces lanuginosus, Lentibacillus daqui, and an unclassified Thermoascus species as potential major contributors to pyrazine synthesis in HTD. The primary differences among the three colored Shandong Daqu types lay in their aroma profiles rather than taste. Electronic nose and electronic tongue analyses demonstrated that the W6S and W3S sensors effectively distinguished black and white Daqu, respectively, marking a novel application of these technologies in Daqu analysis. Acidity was identified as a key factor influencing microbial community structure, flavor characteristics, and enzyme activities, with a nonlinear relationship observed between acidity and enzyme activities. This study highlights the microbial and sensory distinctions among different-colored HTD and provides effective indicators for distinguishing these three types of Daqu.

RevDate: 2025-05-17

Zhang X, Li M, Xiao Y, et al (2025)

Metagenomics reveals combined effects of microplastics and antibiotics on microbial community structure and function in coastal sediments.

Marine pollution bulletin, 218:118153 pii:S0025-326X(25)00628-9 [Epub ahead of print].

Microplastics and antibiotics are emerging pollutants in marine environments, yet their combined effects on coastal sediments remain poorly understood. This study examined the impacts of microplastics and antibiotics on sediment properties and microbial communities through a 60-day laboratory simulation. Results showed that microplastics significantly reduced carbon, nitrogen, and phosphorus levels in sediments, while both antibiotics and combined pollution decreased phosphorus content. Combined pollution also increased NH4[+]-N concentration. Enzyme activity analysis revealed that microplastics elevated alkaline phosphatase activity, antibiotics increased fluorescein diacetate (FDA) hydrolase activity but decreased urease activity, and their combination further enhanced FDA hydrolase activity. Metagenomics analysis demonstrated that the presence of microplastics and antibiotics altered microbial community structure and metabolic functions. The dominant phylum Pseudomonadota (42.62 %-56.24 %) showed reduced abundance under combined pollution. Antibiotics significantly increased resistance gene abundance, while combined pollution led to selective enrichment of these genes. Both pollutants inhibited ammonia assimilation, and antibiotics also suppressed dissimilatory nitrate reduction. Conversely, combined pollution promoted nitrification and nitrogen fixation. While microplastics and antibiotics inhibited methane synthesis, combined pollution increased methane production via elevated mttB and hdrA genes. Antibiotics also reduced methane-oxidizing bacteria and genes, suppressing methane oxidation. These findings provide crucial insights into the ecological impacts of microplastics and antibiotics on coastal sediments, offering a theoretical basis for future marine pollution management strategies.

RevDate: 2025-05-17

Xin Y, Zhang J, Tang Q, et al (2025)

Virus-host interactions driving the transfer of antibiotic resistance genes in a river-reservoir system under heavy rainfall.

Journal of hazardous materials, 494:138605 pii:S0304-3894(25)01521-3 [Epub ahead of print].

Global river systems are grappling with severe pollution from antibiotic resistance genes (ARGs), with river-reservoir (R-R) systems being a common feature in urban waterways. The intensified extreme rainfall events triggered by global climate change exacerbate the spread of ARGs posed by non-point source pollution and combined sewage overflows. This study employs a metagenomics approach to decipher the profile of ARGs and virus-host interactions driving their transfer under heavy rainfall in North Canal, Beijing, with extensive R-R systems. Results indicated that R-R systems contributed to ARGs reduction despite continuous discharge of treated wastewater into the North Canal. The ARGs assembly is predominantly governed by stochastic process, and heavy rainfall enhances the dispersal capability. Nonetheless, the deterministic process determined the assembly of both microbial and viral community. Heavy rainfall not only significantly increased the abundance and diversity of ARGs within the rivers with minimal change in the reservoir, but also promotes the horizontal gene transfer of ARGs with higher conjugative mobility. Although the species accumulation curves approached saturation, no viruses carrying ARGs were detected among the 23,835 non-redundant viral operational taxonomic units (vOTUs), and lytic phage-ARB interactions drove the ARGs reduction with higher VHRs, highlighting its contribution to the reduction of ARGs in R-R system after heavy rainfall.

RevDate: 2025-05-17

Feng W, Ye Y, Xiang Y, et al (2025)

Unraveling the dual role in enhancing methane production and mitigating antibiotic resistance gene spread in anaerobic co-digestion of microalgae and waste activated sludge.

Journal of hazardous materials, 494:138606 pii:S0304-3894(25)01522-5 [Epub ahead of print].

Waste activated sludge (WAS) is a double-edged sword - a recognized repository for antibiotic resistance genes (ARGs) but also a renewable substrate for methane production. Developing effective WAS treatment strategies is therefore of both ecological and practical importance. In this study, we proposed an anaerobic co-digestion approach of WAS and microalgae Chlorella sp. at a 1:2 ratio (MAcoD-1:2). Results showed that MAcoD-1:2 notably increased cumulative methane production by 52.7 %. Co-digestion also demonstrated a significant increase in the abundance of hydrolyzing acidifying bacteria Candidatus_Promineofilum (12.25 %) and methanogenic archaea Methanothrix (61.2 %). This microbial shift suggested that cosubstrates availability fostered a stable bacterial community structure and synergistic metabolic interactions, thus enhancing methane production. Metagenomic analysis revealed a significant reduction in both ARGs and mobile genetic elements in MAcoD-1:2. Notably, substrate level regulation was found to drive restructuring of microbial communities and metabolic patterns. Investigation showed that the Embden-Meyerhof-Parnas pathways were significantly inhibited while the pentose phosphate pathway was promoted, which constrained the cellular energy budget available for ARG horizontal transfer. Partial least squares path modelling (PLS-PM) further substantiated these findings, revealing methane metabolism negatively affected ARGs (-4.52), whereas confirming its positive correlation with methane production (0.22). Our findings provided distinctive perspectives on WAS resource utilization and novel technologies to inhibit the spread of ARGs.

RevDate: 2025-05-17

Lakamp AD, Neujahr AC, Fernando SC, et al (2025)

Short Communication: Imputation accuracy of host genomic data from metagenomic sequence information.

Journal of animal science pii:8134050 [Epub ahead of print].

Metagenomic sequencing is the process of extracting all the genomic information from a given sample. Most metagenomic studies remove any host reads as a matter of course. However, host reads can be used as the basis for genotype imputation to obtain whole genomic sequences. The accuracy of these imputed genotypic calls from a bovine ocular sample was determined by comparing results to those from a commercial array. Overall, imputed genotype calls proved to have a high concordance with array genotype calls (average concordance of 83% and correlation of 0.81 with no filtering). Accuracy increased as filters for host read depth and imputed call confidence were implemented. With filters in place the average percent concordance was 98% (88 - 99%) while the mean correlation was 0.98 (0.89-0.99). Further, identity verification of the metagenomic samples can be carried out if the host is genotyped on another platform.

RevDate: 2025-05-16

Kapandji N, Salmona M, Lemoine A, et al (2025)

Unravelling neutropenic enterocolitis: insights from gut microbiota, and intestinal barrier analyses.

Experimental hematology & oncology, 14(1):74.

BACKGROUND: Neutropenic enterocolitis (NE) is a severe digestive complication of chemotherapy, primarily affecting patients with acute myeloid leukemia (AML). We hypothesized that NE is linked to intestinal barrier dysfunction and gut dysbiosis.

METHODS: Sixty-five AML patients undergoing induction chemotherapy were included in this prospective monocentric cohort. Among them, 26 patients (40%) were diagnosed with NE. Stool samples were subjected to bacterial load quantification (all bacteria quantitative PCR), 16s rRNA metagenomic analysis, and short-chain-fatty-acids quantification. Additionally, fecal calprotectin and human 𝛃-defensin 2 along with plasmatic inflammatory cytokines, and citrulline levels were measured. Human transcriptomic analysis was conducted on samples obtained from anatomical specimens of colectomies of NE patients.

RESULTS: Gut microbiota underwent significant alterations after chemotherapy, transitioning from a diverse and balanced enterotype to enterotypes exhibiting a reduced α-diversity, an increased abundance of Enterococcus faecalis, and a decreased abundance of butyrate-producing genera, which correlated with a decreased fecal concentration of butyrate. Simultaneously, post-chemotherapy, plasma citrulline concentrations decreased indicating enterocyte damages. Finally, human transcriptomic analysis found a significant upregulation of the JAK-STAT signaling KEGG pathway in the colons of NE patients encompassing cytokines (IL-6, OSM-OSMR) that play a pivotal role in sustaining local inflammation within the digestive tract.

CONCLUSIONS: This work reaffirms the significant influence of chemotherapy on the gut microbiota and the integrity of the enterocyte barrier. Severe NE is marked by the development of a local inflammatory response that may be induced by the reduction in butyrate levels.

TRIAL REGISTRATION: The study was registered on Clinicaltrials.gov (identifier: NCT04438278).

RevDate: 2025-05-16

Amutuhaire H, Faigenboim-Doron A, Kraut-Cohen J, et al (2025)

Identifying rhizosphere bacteria and potential mechanisms linked to compost suppressiveness towards Fusarium oxysporum.

Environmental microbiome, 20(1):52.

BACKGROUND: Soilborne fungal phytopathogens pose a significant threat to global food security. While chemical control remains an effective method for managing these pathogens, increasing regulations due to health and environmental concerns, along with rising fungicide resistance, have restricted their use, underscoring the urgent need for sustainable alternatives. The use of compost to enhance soil fertility and suppress plant diseases is well documented. Several studies have underlined the role of microorganisms in disease suppression, but the mechanisms facilitating this disease suppression remain unclear. We evaluated the impact of compost amendment on the composition and functional capacity of the rhizosphere microbiome in cucumber plants (Cucumis sativus) inoculated with Fusarium oxysporum f. sp. radicis-cucumerinum (FORC) under controlled greenhouse conditions using amplicon sequencing, shotgun metagenomic and culture-based techniques.

RESULTS: Compost amendment significantly reduced FORC-induced disease in cucumber relative to non-amended treatments. While FORC inoculation resulted in significant shifts in microbial (bacterial and fungal) community composition in the rhizosphere of non-amended plants, this phenomenon was substantially less pronounced in the rhizosphere of compost-amended plants. Specifically, compost amendment sustained the presence of Actinomycetota (Streptomyces, Actinomadura, Saccharomonospora, Pseudonocardia, Glycomyces, Thermobifida) and Bacillota (Planifilum, Novibacillus) in FORC inoculated plants, that diminished significantly in inoculated plants without compost. These taxa contained a myriad of non-ribosomal peptides and polyketides synthetases biosynthetic gene clusters (BGCs) with putative antimicrobial and iron-chelating functions. We successfully isolated two Streptomyces strains from FORC-suppressing compost amended rhizospheres that were almost identical to the Streptomyces bin2 (99% ortho ANI) metagenome assembled genome identified in the shotgun metagenome analysis. These strains produced extracellular metabolites that inhibited growth of FORC in-vitro and contained BGCs that encode for compounds with potential antimicrobial capacity.

CONCLUSIONS: Based on results presented in this study, we demonstrate that compost alleviates FORC-induced dysbiosis of the rhizosphere microbiome, maintaining abundance of specific bacterial taxa. These bacterial groups may contribute to disease suppression through a myriad of mechanisms including iron chelation and production of fungal antagonizing secondary metabolites.

RevDate: 2025-05-16
CmpDate: 2025-05-17

Zhang S, Zheng N, Zhao S, et al (2025)

Allicin enhances urea-N conversion to microbial-N by inhibiting urease activity and modulating the rumen microbiome in cattle.

Microbiome, 13(1):124.

BACKGROUND: Urea serves as a vital nonprotein nitrogen source in ruminant nutrition, but its efficient utilization is often hampered due to rapid urease activity in the rumen. This study explores the potential of allicin, a garlic-derived compound, as a urease inhibitor to improve urea nitrogen utilization. Enzyme inhibition kinetics and molecular docking were used to identify allicin's interaction sites on urease. Additionally, metagenomic and [15]N-urea metabolic flux analyses were conducted to evaluate allicin's impact on microbial populations and urea-N metabolism.

RESULTS: Allicin was identified as an inhibitor of ruminal urease, with an IC50 of 126.77 ± 1.21 μM. Molecular docking studies have shown that allicin forms hydrogen bonds with key urease residues, leading to the preemption of the urease active site and thus impeding urea binding. In a simulated rumen environment, allicin significantly reduced urea hydrolysis and ammonia production. Furthermore, allicin modified the rumen microbial community by inhibiting Prevotella species while promoting the growth of Ruminobacter species and Denitrobacterium detoxificans. A [15]N-urea metabolic flux analysis revealed that allicin facilitated the incorporation of urea-derived nitrogen into microbial amino acids and nucleotides.

CONCLUSION: Allicin effectively inhibits urease activity in the rumen, enhancing the conversion of urea-N into microbial biomass. These findings suggest that allicin has significant potential to optimize urea metabolism in the rumen, offering a novel strategy for improving ruminant nitrogen nutrition. Video Abstract.

RevDate: 2025-05-16
CmpDate: 2025-05-16

Haas G, B Lee (2025)

De novo rescue of new henipaviruses under BSL-4 conditions - From sequence to pathogen.

Advances in virus research, 121:61-99.

Zoonotic paramyxoviruses, including the highly pathogenic henipaviruses (HNVs), pose significant risks to global health due to their high mortality rates, potential for human-to-human transmission, and lack of approved countermeasures. Recent metagenomic surveys have uncovered an extensive diversity of HNVs and related paramyxoviruses circulating in wildlife, the majority of which remain uncharacterized due to the dearth of viral isolates. In lieu of viral isolates, reverse genetics systems offer an approach to derive infectious clones de novo in the laboratory, facilitating research into the biology, zoonotic potential, and pathogenicity of novel HNVs. This chapter explores the methodologies and applications of reverse genetics systems for novel HNVs, including considerations for virus sequence validation, full-length virus recovery, and the development of platforms such as minigenomes, replicons, and virus replicon particles. Such biologically-contained life cycle modeling systems enable research to be conducted at lower biocontainment, and provide accessible tools through which to investigate HNV biology. This work demonstrates the versatility of reverse genetics systems in advancing our understanding of high-consequence pathogens, enabling the proactive development of vaccines, antivirals, and diagnostic tools. By integrating these methodologies within a framework of biosafety and biosecurity, researchers can better prepare for and respond to future zoonotic threats.

RevDate: 2025-05-16

Goto M, Yamamoto K, Horiba K, et al (2025)

Detection of Prevotella species in anaerobic culture-negative multiple abscesses using next-generation sequencing.

Journal of infection and chemotherapy : official journal of the Japan Society of Chemotherapy pii:S1341-321X(25)00130-8 [Epub ahead of print].

Next-generation metagenomic sequencing (mNGS) provides a comprehensive analysis of DNA and RNA in samples. In this case report, pus specimens were collected from an 86-year-old male with multiple muscle, periarticular, and bone abscesses, and osteomyelitis, without prior antimicrobial therapy. Results of bacterial culture tests, including anaerobic and intensified cultures, were negative. Despite this, mNGS using shotgun sequencing revealed a significant number of DNA and RNA nucleic acid reads from Prevotella spp. Although the subspecies could not be identified, mNGS allowed the selection of an appropriate antimicrobial agent and suggested significant oral contamination as the portal of entry. In summary, mNGS helped identify the causative organism in a case without prior antimicrobial therapy wherein culture test results were negative.

RevDate: 2025-05-16
CmpDate: 2025-05-16

Sarhan MS, Antonello G, Weissensteiner H, et al (2025)

Human mitochondrial DNA in public metagenomes: Opportunity or privacy threat?.

Cell, 188(10):2561-2566.

Human DNA is unavoidably present in metagenomic analyses of human microbiomes. While current protocols remove human DNA before submission to public repositories, mitochondrial DNA (mtDNA) has been overlooked and frequently persists. We discuss the privacy risks and research opportunities associated with mtDNA, urging consideration by the scientific, ethics, and legal communities.

RevDate: 2025-05-16

Zhan Y, Chen N, Feng C, et al (2025)

Electron flow dynamics in sulfur-based autotrophic bioreduction of Cr(VI) mediated by inorganic carbon species: Insights for environmental remediation.

Journal of hazardous materials, 494:138585 pii:S0304-3894(25)01501-8 [Epub ahead of print].

The deployment of sulfur-based autotrophic bioremediation for in situ groundwater remediation faces hurdles due to electron competition among electron acceptors, impacting contaminant removal efficiency and causing pH instability. Notably, the sulfur-based bioreduction of Cr(VI) [Cr(VI)-SAR] exemplifies gaps in our comprehension of electron competition dynamics with inorganic carbon (IC), and its subsequent influence on pH. Herein, we established a Cr(VI)-SAR system interfaced with diverse IC species, providing definitive insights into electron transfer mechanisms through rigorous multi-biocycle analysis and thermodynamically consistent half-reaction calculations. Through quantification of electron transfer pathways, we derived reaction equations for Cr(VI) reduction in conjunction with various IC species. Furthermore, metagenomics were used to quantify functional enzymes and identify diverse electron transport patterns alongside IC fixation pathways. Notably, the enrichment of genes associated with electron shuttles and conductive pili expands the paradigm of extracellular electron transfer, while the Wood-Ljungdahl pathway streamlines microbial metabolic proliferation with reduced energy expenditure. Quantitative analysis of these functional genes offers a plausible mechanism underlying the observed shifts in electron competition between IC and Cr(VI). This research marks an advancement in the Cr(VI)-SAR foundational theory, with a particular focus on the dynamics of electron competition, contributing to a deeper understanding of this environmentally significant process.

RevDate: 2025-05-16

Yu YL, Lin WH, Surampalli RY, et al (2025)

Adaptive fluoride removal across concentration scales: Potential roles of microbial and acicular gypsum interactions in nitrogen and phosphate cycling.

Journal of hazardous materials, 494:138628 pii:S0304-3894(25)01544-4 [Epub ahead of print].

Fluoride contamination in groundwater is a critical environmental and public health concern. Traditional remediation methods, including chemical precipitation and adsorption, are hindered by low nucleation efficiency at low fluoride concentrations and severe microbial inhibition under high fluoride stress. This study introduces an adaptive two-stage remediation system that synergistically integrates abiotic and biotic mechanisms to achieve effective fluoride removal across concentration scales. In Stage I, under elevated fluoride stress (100 mg/L), acicular gypsum (AG) facilitated abiotic calcium precipitation, effectively reducing fluoride toxicity and creating favorable conditions for microbial activity. Residual calcium released from AG further supported microbial-induced calcium precipitation (MICP) in Stage II under lower fluoride stress (10 mg/L). The system achieved a fluoride removal efficiency of 98.85 % under high fluoride conditions and demonstrated consistent performance across a broad concentration range. This integrated approach, combining abiotic and biotic mechanisms, offers a promising strategy for addressing diverse fluoride contamination scenarios. Here, phosphate (P)-mediated mineralization and microbial denitrification drive pH modulation, stabilizing fluoride as fluorapatite [Ca5(PO4)3F]. Microbial community and network analysis revealed key taxa, including Cupriavidus and Ralstonia, which facilitated P cycling and fluorapatite formation. Additionally, Bradyrhizobium enhanced nitrogen (N) cycling and supported early microbial adaptation, emphasizing the interplay of microbial interactions in driving system functionality. Functional predictions using PICRUSt2 identified genes associated with N and P cycling, highlighting the capacity of the system for nutrient adaptation under complex environmental conditions.

RevDate: 2025-05-16

Siddiquee M, Cornelius S, Seo Y, et al (2025)

Uncovering microbial interactions in a persistent Planktothrix bloom: Towards early biomarker identification in hypereutrophic lakes.

Water research, 283:123683 pii:S0043-1354(25)00592-5 [Epub ahead of print].

Cyanobacterial harmful algal blooms pose significant threats to global water supplies, ecosystems, and economies. Among the harmful cyanobacteria, Planktothrix, a resilient and toxin-producing filamentous cyanobacterium, has garnered increasing attention. However, an understanding of the entire microbiome, particularly the phycosphere surrounding Planktothrix blooms, remains largely unexplored. To the best of our knowledge, this is the first comprehensive study combining 16S rDNA and fungal internal transcribed spacer amplicon sequencing and shotgun metagenomics to elucidate Planktothrix bloom microbiomes and identify potential microbial or functional biomarkers for CyanoHABs. Our observations revealed that a summer bloom in Grand Lake St. Marys was initiated with Dolichospermum and then shifted to Planktothrix dominance. This transition was associated with nitrogen metabolism genes, suggesting that nitrogen plays a key role in bloom persistence through interactions among nitrogen-fixing bacteria, ammonia-oxidizing archaea, anammox bacteria, and denitrifiers. Additionally, metagenomic data revealed a strong positive correlation of toxin concentration with carbohydrate-nitrogen-sulfur-fatty acid associated metabolic pathways and a strong negative correlation with pollutant degradation pathways. Intriguingly, diazotrophic methane-related microbes were detected, which opens discussion on potential symbiosis that couples nitrogen and carbon metabolism. Toxin-degrading bacteria, such as Polynucleobacter and Acidovorax, were positively correlated with fungi like Vishniacozyma, proposing their cooperative roles during bloom events. Notably, Rhodobacter, a photosynthetic purple non-sulfur bacterium, showed strong negative correlations with both Planktothrix and the toxin-producing gene mcyE, positioning it as a promising biomarker for early bloom detection. Overall, this study advances the understanding of Planktothrix-dominated bloom ecology and highlights microbial signatures for proactive CyanoHAB management in freshwater systems.

RevDate: 2025-05-18
CmpDate: 2025-05-16

Wan J, Liu T, Li F, et al (2025)

Diagnosis, clinical features, and mortality risk factors in a Chinese cohort with pulmonary mucormycosis.

PloS one, 20(5):e0323624.

BACKGROUND: Pulmonary mucormycosis is a rare and often fatal fungal infection. Identifying high-risk factors for pulmonary mucormycosis holds the potential to improve patient outcomes. This study aimed to identify the clinical characteristics and risk factors associated with pulmonary mucormycosis outcomes in a Chinese cohort.

MATERIALS AND METHODS: A retrospective analysis was conducted on 37 patients diagnosed with pulmonary mucormycosis, focusing on clinical records, laboratory findings, and computed tomography (CT) imaging. Diagnosis was primarily based on histopathology or next-generation sequencing.

RESULTS: The median age of the patients was 55 years, and the most common underlying conditions were hematological malignancies, diabetes, and organ transplantation. Imaging frequently revealed bilateral lung involvement with ground-glass opacities and nodular lesions. The overall mortality rate was 29.7%, with significant risk factors for 90-day mortality including hypertension (Hazard Ratio [HR] = 3.36, 95% Confidence Interval [CI] = 1.01-11.12, P = 0.048), organ transplantation (HR = 4.93, 95% CI = 1.48-16.4, P = 0.009), and immunosuppression (HR = 8.83, 95% CI = 1.13-69.14, P = 0.038).

CONCLUSIONS: Early suspicion and timely diagnostic measures, such as biopsy or metagenomic sequencing, are crucial for improving patient outcomes. These findings underscore the importance of recognizing and managing pulmonary mucormycosis in high-risk populations.

RevDate: 2025-05-16

Amen RA, Hassan YM, Essmat RA, et al (2025)

Harnessing the Microbiome: CRISPR-Based Gene Editing and Antimicrobial Peptides in Combating Antibiotic Resistance and Cancer.

Probiotics and antimicrobial proteins [Epub ahead of print].

The growing crisis of antibiotic resistance and the increasing incidence of cancer have prompted the exploration of innovative approaches, such as gene editing and antimicrobial peptides (AMPs). The human microbiome is integral to various aspects of health, disease, and therapeutic development, influencing metabolic pathways, immune function, and pathogen resistance. Recent advances in gene editing technologies, particularly CRISPR (clustered regularly interspaced short palindromic repeats), have opened new avenues for leveraging the microbiome to address complex medical challenges, including combating multidrug-resistant pathogens and cancer. The microbiome plays a crucial role in combating antibiotic resistance by modulating microbial communities, influencing pathogen survival and susceptibility to treatments. This review explores the microbiome's dynamic role in metabolic regulation, its contribution to cancer management, and how AMPs help maintain homeostasis and exhibit emerging anticancer properties, supported by both preclinical findings and clinical evidence. Additionally, CRISPR-based microbiome engineering offers potential to enhance host-microbiome interactions, optimizing therapeutic outcomes. The integration of microbiome metagenomics and proteomics has led to the discovery of novel AMPs with targeted anticancer effects. Innovative strategies, such as engineered probiotics and CRISPR-based microbiome engineering, present exciting prospects for next-generation therapies. Despite these advances, the translation of microbiome-based therapies into clinical settings remains challenging due to ethical, regulatory, and ecological hurdles. This review underscores the transformative potential of microbiome-based interventions, emphasizing the role of personalized medicine in maximizing therapeutic efficacy. Furthermore, we also address critical research gaps, limitations, and future directions, including optimizing AMP stability, delivery, and bioavailability, as well as overcoming the regulatory and ethical challenges in clinical translation.

RevDate: 2025-05-16

Paul B, Pan P, N Bhattacharyya (2025)

Investigating the impact of fly ash contamination on soil microbial diversity: a metagenomic study near Kolaghat Thermal Power Plant, India.

Environmental science and pollution research international [Epub ahead of print].

Soil metagenomics using whole genome shotgun sequencing (WGS) uncovers microbial diversity and functionality in soils. This study aimed to explore microbial diversity and functional adaptation in soils exposed to fly ash near the Kolaghat Thermal Power Plant, West Bengal, India, using whole genome shotgun sequencing. Understanding how microbial communities respond to such contamination is essential for developing effective bioremediation strategies. Soil samples were collected from the area, designated as BP1 sample selected for detailed metagenomics analysis. The study extracted DNA with a concentration of 46.2 ng/µl, followed by quality checks and profiling to identify microbial communities. Analysis showed that bacterial communities were dominated by Actinobacteria (48.28%) and Proteobacteria (40.80%), while fungi were primarily represented by Ascomycota (89.50%). Among viruses, Negarnaviricota were most prevalent, with the class Insthoviricetes accounting for 94.60%. Diversity analysis indicated that bacterial populations remained stable, fungal diversity fluctuated, and viral diversity increased, reflecting complex ecological interactions. The presence of key genes involved in lipid and carbohydrate metabolism suggests that microbes adapted to contamination by heavy metals and organic pollutants. The dominance of stress-tolerant Proteobacteria and Actinobacteria highlights their potential role in bioremediation. Future research should explore the potential of these microbes, particularly the role of ABC transporters, in improving pollutant degradation.

RevDate: 2025-05-16

Thajudeen J, Venkatachalam S, PV Vipindas (2025)

Antibiotic resistome in the glacier forelands of polar regions.

Applied and environmental microbiology [Epub ahead of print].

UNLABELLED: Antibiotic resistance genes (ARGs) pose a significant threat, exacerbated by climate change impacts on polar regions, particularly melting glaciers and permafrost. While ancient antibiotic resistance exists in the environments, the release and dissemination of ARGs remain poorly understood. This study investigated ARG composition and distribution in 43 metagenomes from Arctic and Antarctic glacier forelands. We identified 154 ARGs, predominantly bacitracin resistance, followed by rifamycin, fosfomycin, vancomycin, tetracycline, and beta-lactam resistance genes. Significant correlations were observed between ARGs and mobile genetic elements (MGEs), with 20 ARGs associated with tnpA MGEs. Actinomycetota and Pseudomonadota were the primary ARG-carrying phyla. Metagenome-assembled genomes revealed Mycobacterium sp., Pseudomonas sp., and Tatlockia sp. as major ARG-harboring pathogens in the glacier forelands. Evolutionarily adapted, distinct ancient ARGs were abundant in the polar environments, varying between different geographic regions. The environmental parameters such as pH and total organic carbon significantly influenced the ARG distribution in the Arctic and Antarctic glacier forelands. This study provides crucial baseline data on antimicrobial resistance, highlighting potential risks associated with rapid environmental change in the regions.

IMPORTANCE: Antibiotic resistance poses a significant global health threat, exacerbated by the release of antibiotic resistance genes from melting glaciers and permafrost due to climate change. This study provides crucial baseline data on the composition and distribution of antibiotic resistance genes in these vulnerable polar environments, which is essential for understanding and mitigating the risks associated with their release. The findings have far-reaching implications for global health security and emphasize the need for further research to address this emerging threat.

RevDate: 2025-05-17
CmpDate: 2025-05-16

Veseli I, Chen YT, Schechter MS, et al (2025)

Microbes with higher metabolic independence are enriched in human gut microbiomes under stress.

eLife, 12:.

A wide variety of human diseases are associated with loss of microbial diversity in the human gut, inspiring a great interest in the diagnostic or therapeutic potential of the microbiota. However, the ecological forces that drive diversity reduction in disease states remain unclear, rendering it difficult to ascertain the role of the microbiota in disease emergence or severity. One hypothesis to explain this phenomenon is that microbial diversity is diminished as disease states select for microbial populations that are more fit to survive environmental stress caused by inflammation or other host factors. Here, we tested this hypothesis on a large scale, by developing a software framework to quantify the enrichment of microbial metabolisms in complex metagenomes as a function of microbial diversity. We applied this framework to over 400 gut metagenomes from individuals who are healthy or diagnosed with inflammatory bowel disease (IBD). We found that high metabolic independence (HMI) is a distinguishing characteristic of microbial communities associated with individuals diagnosed with IBD. A classifier we trained using the normalized copy numbers of 33 HMI-associated metabolic modules not only distinguished states of health vs IBD, but also tracked the recovery of the gut microbiome following antibiotic treatment, suggesting that HMI is a hallmark of microbial communities in stressed gut environments.

RevDate: 2025-05-16

Prisco SZ, Blake M, Kazmirczak F, et al (2025)

Lactobacillus Restructures the Micro/Mycobiome to Combat Inflammation-Mediated Right Ventricular Dysfunction in Pulmonary Arterial Hypertension.

Circulation. Heart failure [Epub ahead of print].

BACKGROUND: Inflammation suppresses right ventricular (RV) function in pulmonary arterial hypertension (PAH). In particular, we showed GP130 (glycoprotein-130) signaling promotes pathological microtubule remodeling and RV dysfunction in rodent PAH. Emerging data demonstrate the intestinal microbiome regulates systemic inflammation, but the impact of modulating the gut microbiome on the GP130-microtubule axis in RV failure is unknown.

METHODS: Two weeks following monocrotaline injection, rats were administered daily Lactobacillus rhamnosus (4×10[7] colony-forming units) via oral gavage for 10 days. Next-generation metagenomics and internal transcribed spacer 2 sequencing delineated fecal bacterial and fungal compositions. SomaScan proteomics measured levels of 7596 serum proteins. RV immunoblots quantified protein abundances. Light or super resolution confocal microscopy assessed RV, lung, and jejunal morphology. Echocardiography and invasive closed-chest pressure-volume loops evaluated PAH severity and RV function. The relationship between Lactobacillus abundance and RV function was assessed in 65 patients with PAH.

RESULTS: Lactobacillus administration restructured both the intestinal micro- and mycobiome. The alteration in the gut ecosystem improved intestinal health as demonstrated by increased jejunal villus length and glycocalyx thickness and diminished intestinal permeability biomarkers. Serum proteomics revealed Lactobacillus modulated systemic inflammation and decreased circulating GP130 ligands. Lactobacillus-mediated suppression of GP130 signaling blunted pathological microtubule remodeling in RV cardiomyocytes. Microtubule-associated phenotypes, including RV cardiomyocyte and nuclear hypertrophy, transverse tubule integrity, and connexin-43 localization, were all corrected with Lactobacillus. These cellular changes manifested as improved RV function despite no significant alteration in PAH severity. Finally, patients with PAH and detectable fecal Lactobacillus had superior RV function despite similar mean pulmonary arterial pressure and pulmonary vascular resistance as compared with those without detectable Lactobacillus.

CONCLUSIONS: Lactobacillus supplementation restructures the gut micro/mycobiome, restores intestinal health, dampens systemic inflammation, and reduces GP130 ligands and associated RV cardiomyocyte microtubule remodeling. These data identify a novel microbiome-inflammation-microtubule axis that has therapeutic relevance for RV dysfunction.

RevDate: 2025-05-17

Shao X, Yang C, Chen Y, et al (2025)

Sorghum-peanut intercropping under salt stress mediates rhizosphere microbial community shaping in sorghum by affecting soil sugar metabolism pathways.

Frontiers in microbiology, 16:1589415.

Soil salinization is a substantial impediment to agricultural production, and investigating sustainable mitigation measures is essential for addressing food security. We conducted a two-year pot experiment to investigate the shaping mechanism of sorghum rhizosphere microbial community in sorghum-peanut intercropping system under salt stress. The experiment comprised four treatments: sole-cropped sorghum under normal soil conditions (NSS), intercropped sorghum under normal soil conditions (NIS), sole-cropped sorghum under salt-stress conditions (SSS), and intercropped sorghum under salt-stress conditions (SIS). The sorghum rhizosphere soil metabolites were examined using GC-MS, and the rhizosphere microbial community was characterized through metabolome sequencing. We identified 123 metabolites across treatments, with significant differences between normal and salt-stress soil conditions. The major metabolite classes included carbohydrates, alcohols, and acids. Key carbohydrates, including fructose and sucrose, were significantly reduced in the SIS than in SSS, NSS, and NIS treatments. Metabolic pathway analyses revealed that these differences were primarily associated with "Fructose and mannose metabolism," "Starch and sucrose metabolism" and "ABC transporter." Metabolome analyses revealed significant differences in microbial community structure across diverse soil conditions and cropping patterns. At phylum level, Proteobacteria, Gemmatimonadetes, and Verrucomicrobia predominated, with their relative abundance experiencing substantial changes under salt stress. SIS facilitated the enrichment of specific genera (Rhodanobacter), which were associated with soil health and stress tolerance. Additionally, the responses of rare microbial taxa to salt stress and intercropping varied, with specific rare microbial taxa (Rhizopus) exhibiting relative abundance under salt stress. Correlation analysis of metabolites and microbial taxa revealed that certain carbohydrates were significantly positively correlated with specific microbial phyla (Cyanobacteria and Nitrospirae) while demonstrating a significant negative correlation with Planctomycetota and Bacteroidota. These correlations indicate that sorghum intercropped with peanuts can promote the enrichment of microbial taxa under salt stress, thereby enhancing soil metabolic functions and stress tolerance by optimizing the rhizosphere microbial community. This study reveals the mechanism through which sorghum-peanut intercropping under salt stress influences the composition of sorghum's rhizosphere microbial community by modulating soil sugar metabolism pathways. This finding provides a new perspective on sustainable agricultural practices in saline soils and emphasizes the pivotal role of plant-metabolite-microbe interactions in abiotic stress mitigation.

RevDate: 2025-05-17

Han Y, Cao B, Tang J, et al (2025)

A comprehensive multi-omics analysis uncovers the associations between gut microbiota and pancreatic cancer.

Frontiers in microbiology, 16:1592549.

Pancreatic cancer is one of the most lethal malignant neoplasms. Pancreatic cancer is related to gut microbiota, but the associations between its treatment and microbial abundance as well as genetic variations remain unclear. In this study, we collected fecal samples from 58 pancreatic cancer patients including 43 pancreatic ductal adenocarcinoma (PDAC) and 15 non-PDAC, and 40 healthy controls, and shotgun metagenomic sequencing and untargeted metabolome analysis were conducted. PDAC patients were divided into five groups according to treatment and tumor location, including treatment-naive (UT), chemotherapy (CT), surgery combined with chemotherapy (SCT), Head, and body/tail (Tail) groups. Multivariate association analysis revealed that both CT and SCT were associated with increased abundance of Lactobacillus gasseri and Streptococcus equinus. The microbial single nucleotide polymorphisms (SNPs) densities of Streptococcus salivarius, Streptococcus vestibularis and Streptococcus thermophilus were positively associated with CT, while Lachnospiraceae bacterium 2_1_58FAA was positively associated with Head group. Compared with Tail group, the Head group showed positive associations with opportunistic pathogens, such as Escherichia coli, Shigella sonnei and Shigella flexneri. We assembled 424 medium-quality non-redundant metagenome-assembled genomes (nrMAGs) and 276 high-quality nrMAGs. In CT group, indole-3-acetic acid, capsaicin, sinigrin, chenodeoxycholic acid, and glycerol-3-phosphate were increased, and the accuracy of the model based on fecal metabolites reached 0.77 in distinguishing healthy controls and patients. This study identifies the associations between pancreatic cancer treatment and gut microbiota as well as its metabolites, reveals bacterial SNPs are related to tumor location, and extends our knowledge of gut microbiota and pancreatic cancer.

RevDate: 2025-05-17

Yu T, Cheng L, Zhang Q, et al (2025)

Characterization of antibiotic resistance genes and virulence factors in organic managed tea plantation soils in southwestern China by metagenomics.

Frontiers in microbiology, 16:1580450.

Sustainable organic management practices have gained significant attentions for its potential health and environmental benefits. However, the spread of antibiotic resistance genes (ARGs) and virulence factors (VFs) in soils, plants, and agricultural products has severely limited the development of organic managements on agriculture. At present, the distribution and assembly of ARGs and VFs in organic managed tea plantation systems remains largely unknown. Here, we used metagenomic analysis to explore soil microbial taxa, ARGs and VFs in 20 years of conventional managed (CM) and organic managed (OM) tea plantation soils. Results showed that total abundance of ARGs in OM was 16.9% (p < 0.001) higher than that in CM, and the increased ARGs were rpoB2, evgS, MuxB, TaeA, and efrA. As for VFs, OM significantly increased the abundance of adherence, stress protein and actin-based motility compared to CM. Moreover, OM increased the relative abundance of soil microbial taxa harboring ARGs and VFs, which were Streptomyces, Pseudomonas, and Terrabacter, compared to CM. Network analysis suggested that OM increased the positive interactions of microbial taxa-ARGs, microbial taxa-VFs and ARGs-VFs compared to CM. Impact of stochastic process on the assembly of soil microbial taxa, ARGs and VFs in OM was stronger than that in CM. Overall, these findings provide a basis for integrating ARGs, VFs and pathogen hosts to assess the ecological and health risks in long-term organic managed soils, and increased efforts need to be done in reducing ARGs, VFs and bacterial pathogens in fertilizers for organic managements on agriculture.

RevDate: 2025-05-17

Santarelli G, Bianco DM, Capriati M, et al (2025)

Bladder Microbiota Snapshots Help to Monitor Urinary Tract Infections in Vulnerable Patients.

Mediterranean journal of hematology and infectious diseases, 17(1):e2025028.

RevDate: 2025-05-17
CmpDate: 2025-05-16

Chen S, Ouyang T, Wang K, et al (2025)

Application of metagenomic next-generation sequencing in pathogen detection of lung infections.

Frontiers in cellular and infection microbiology, 15:1513603.

BACKGROUND: Metagenomic next-generation sequencing (mNGS) has been widely reported to provide crucial information for the diagnosis and treatment of infectious diseases. In this study, we aimed to evaluate mNGS in pathogens diagnosis of lung infections.

METHODS: A total of 188 patients who were suspected of pulmonary infection and received medical treatment at the Second Affiliated Hospital of Nanchang University from August 2022 to December 2023 were enrolled in this study. Conventional microbiological tests (CMTs) and mNGS were employed for pathogens diagnosis.

RESULTS: Statistical results indicated that mNGS were significantly better than CMTs in sensitivity, negative predictive value, and negative likelihood ratio. Remarkably, the positive detection rate of mNGS was significantly higher than that of CMTs (86.17% vs 67.55%, P < 0.01). Through mNGS, we identified 96 pathogens, comprising 59 bacteria, 18 fungi, 15 viruses, and 4 special pathogens. In contrast, CMTs detected 28 species, including 25 bacteria and 3 fungi. The effectiveness rate of antibiotic treatment decisions based on mNGS results was 40.60%. Out of 54 cases with positive treatment impacts, mNGS results contributed to the treatment and improved prognosis of 16 infections caused by atypical pathogens.

CONCLUSION: Our results proved the essential role of mNGS in lung infection diagnosis, enabling early detection and the prompt development of targeted anti-infection therapies. We recommended that the clinical application of mNGS can enhance treatment effectiveness and improve patient prognosis.

RevDate: 2025-05-15
CmpDate: 2025-05-16

Chen P, Wei X, Que T, et al (2025)

Molecular detection of novel Jingmen tick virus in hard ticks from diverse hosts in Guangxi, southwestern China.

Virology journal, 22(1):143.

BACKGROUND: Ticks are the second most important vectors of arboviruses after mosquitoes, and they also serve as reservoir hosts for some zoonotic diseases. It is essential to understand the prevalence of tick-borne viruses in ticks from different sampling sites and vectors, as this information can facilitate the surveillance and prevention of arboviral infectious diseases.

METHODS: We systematically collected ticks from a variety of animals, including wildlife and domestic livestock, across 18 distinct regions in Guangxi Zhuang Autonomous Region(Guangxi). We then identified the ticks using traditional morphological classification and molecular biology methods to investigate the diversity of ticks in the regionWe also systematically examined the diversity of viruses carried by ticks using comprehensive virological methods based on viral metagenomics. We performed phylogenetic and recombination analyses for the assembled viral sequences.

RESULTS: We collected 1286 Ixodidae from 18 sampling sites in 17 districts of Guangxi. We identified 4 genera and 6 species of Ixodidae. We annotated 2 unclassified viruses and 13 known viral families. We assembled 208 nucleotide sequences and obtained six near full-length sequences of Jingmen tick virus (JMTV). Among these sequences, GXTV-PC4.2 and GXTV-43 were new mutant strains of JMTV. We detected genetic recombination of JMTV in segments 2, 3, and 4 of JMTV.

CONCLUSIONS: Our study uncovers a diverse tick fauna in Guangxi, including 4 genera and 6 species, and a broad virome with 13 viral families and 2 novel viruses. The JMTV, in particular, shows significant genetic diversity and potential for cross-species transmission, marked by new strains and recombination events. These findings underscore the need for vigilant tick-borne disease surveillance in Guangxi.

RevDate: 2025-05-15

Rahman Hera M, D Koslicki (2025)

Estimating similarity and distance using FracMinHash.

Algorithms for molecular biology : AMB, 20(1):8.

MOTIVATION: The increasing number and volume of genomic and metagenomic data necessitates scalable and robust computational models for precise analysis. Sketching techniques utilizing k -mers from a biological sample have proven to be useful for large-scale analyses. In recent years, FracMinHash has emerged as a popular sketching technique and has been used in several useful applications. Recent studies on FracMinHash proved unbiased estimators for the containment and Jaccard indices. However, theoretical investigations for other metrics are still lacking.

THEORETICAL CONTRIBUTIONS: In this paper, we present a theoretical framework for estimating similarity/distance metrics by using FracMinHash sketches, when the metric is expressible in a certain form. We establish conditions under which such an estimation is sound and recommend a minimum scale factor s for accurate results. Experimental evidence supports our theoretical findings.

PRACTICAL CONTRIBUTIONS: We also present frac-kmc, a fast and efficient FracMinHash sketch generator program. frac-kmc is the fastest known FracMinHash sketch generator, delivering accurate and precise results for cosine similarity estimation on real data. frac-kmc is also the first parallel tool for this task, allowing for speeding up sketch generation using multiple CPU cores - an option lacking in existing serialized tools. We show that by computing FracMinHash sketches using frac-kmc, we can estimate pairwise similarity speedily and accurately on real data. frac-kmc is freely available here: https://github.com/KoslickiLab/frac-kmc/.

RevDate: 2025-05-15

Wang J, Zhou Y, Zhang T, et al (2025)

Pre-treatment of excess sludge with sulfide-containing wastewater for composite electron donor formation to enhance denitrification.

Bioresource technology pii:S0960-8524(25)00639-X [Epub ahead of print].

Utilizing the fermentation liquor of excess sludge (ES) for the denitrification process represents an effective strategy for the valorization of ES and achieving environmentally friendly denitrification. However, ES fermentation technologies require significant energy or chemical product inputs. The present study proposes a novel method utilizing sulfide-containing wastewater to pretreat ES for generating dissolved organic matter (DOM), with sulfides and DOM collectively forming a composite electron donor (S-ES-DOM). The introduction of S-ES-DOM enables the establishment of integrated autotrophic and heterotrophic denitrification (IAHD) process, achieving 100 % denitrification efficiency. Molecular analysis identified an increase in biodegradable components within S-ES-DOM, which were effectively utilized during the IAHD process. The functional genes associated with nitrate-sulfide-organic carbon metabolism and electron transfer exhibited upregulation. The mixotrophic microbial community enables flexible adoption of multiple metabolic pathways. This strategy simultaneously achieves low-cost ES valorization and low-carbon nitrate/sulfide removal through integrated nitrogen-sulfur-carbon metabolism.

RevDate: 2025-05-15

Pereira S, Rubina M, Roga A, et al (2025)

Evaluation of functional capacity and plastic-degrading potential of Bacillus spp. and other bacteria derived from the Getliņi landfill (Latvia).

Environmental research pii:S0013-9351(25)01100-4 [Epub ahead of print].

The mechanisms of plastic biodegradation by microorganisms remain poorly understood because of high variability in environmental conditions. This study aimed to isolate, identify, and characterise bacteria with plastic-degrading potential derived from the Getliņi EKO landfill (Riga, Latvia). Among the bacteria selected, Bacillus was the predominant genus identified, whereas Pseudomonas dominated the metagenome. Comparative testing revealed the highest non-specific esterase activity in cultures of B. licheniformis and B. altitudinis. Following a 6-week batch experiment, a newly developed bacterial consortium biologically reduced the weight of untreated low-density polyethylene (LDPE), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) by 19.44%, 5.99%, and 2.58%, respectively. Thermally pre-treated PET and acid pre-treated HDPE resulted in greater weight losses than their respective untreated forms. Scanning electron microscopy primarily showed single cells and microcolonies attached to the granule surfaces. Microbial respiration and fluorescein diacetate hydrolysis tests suggested that the granules had a stimulating effect on the metabolic activity of planktonic cells. Cultures with untreated LDPE and PET exhibited the highest ecotoxicity for Thamnocephalus platyurus, reducing ingestion activity by 60.39% and 71.25% of the control, respectively. In conclusion, the Getliņi EKO landfill appears to be a promising sampling source for bacteria capable of biodegrading fossil-based polymers. Further refinement of methods for the isolation and evaluation of plastic degraders will provide new insights into the potential of microbial resources for plastic degradation.

RevDate: 2025-05-15

Yin CY, Sadiq H, Liao WH, et al (2025)

Identification and functional characterization of two novel hyaluronate lyases BxHly33 and BiHly33, from the human gut microbiome.

International journal of biological macromolecules pii:S0141-8130(25)04705-1 [Epub ahead of print].

Hyaluronic acid (HA) is a key glycosaminoglycan in the extracellular matrix, essential for cellular signaling, hydration, and tissue homeostasis. This study identified two novel polysaccharide lyase family 33 (PL33) hyaluronate lyases, BxHly33 and BiHly33, from the human gut microbiome using metagenomic screening. These enzymes demonstrated high specificity and stability in degrading HA, with optimal activity at pH 6.6-7.6 and temperatures of 35-40 °C. Furthermore, structural and biochemical analyses revealed their catalytic mechanisms, highlighting key residues responsible for their function. Notably, specific alanine substitutions significantly enhanced their enzymatic activity. BxHly33 and BiHly33 present promising alternatives to conventional hyaluronidases, which are often costly and immunogenic, for drug delivery and tissue engineering applications. This study will provide novel insights into exploring their therapeutic potential in HA degradation therapies.

RevDate: 2025-05-15

Tong X, Zhang X, Fu J, et al (2025)

Mechanisms on nitrogen amendment stimulating methane oxidation in landfill cover soils.

Waste management (New York, N.Y.), 203:114893 pii:S0956-053X(25)00304-6 [Epub ahead of print].

Landfill cover soil plays a pivotal role in mitigating CH4 input to the atmosphere. However, the community and activity of methane-oxidizing bacteria (MOB), and their responses to nutrient amendment remain insufficiently understood in landfill cover soils. In this study, the influencing mechanisms of nitrogen amendment on MOB activity, and their functional microorganisms and genes were investigated in landfill cover soils. An exogenous ammonium and nitrate addition could enhance CH4 oxidation activity of 13.9-34.1 times in the landfill cover soil. The NH4[+]-N addition of 800 mg kg[-1] could cause a maximum nitrite accumulation of 41.2 mg kg[-1] in the landfill cover soils and inhibit CH4 oxidation. Nitrogen was mainly deposited in the landfill cover soil in the form of organic nitrogen, with a slight loss of 1.47-3.21 % in the treatments amended with ammonium and nitrate at each stage. A high CH4 oxidation could increase the secretion of CH4-derived carbon and improve the organic matter of soil. Compared with ammonium, the nitrate addition had a greater stimulating effect on microbial and MOB growth. Type I MOB predominated in the soils amended with ammonium and nitrate, whereas type II MOB dominated in the nitrogen-deficient soils. Metagenomic analysis showed that the genes related to nitrogen fixation (nifDKH) were more abundant in the nitrogen-deficient soil than the others. These findings suggest that an appropriate ammonium and nitrate addition could induce carbon and nitrogen accumulation, and stimulate microbial metabolism such as CH4 oxidation and element cycles in the landfill cover soils to mitigate CH4 emission.

RevDate: 2025-05-15

Liu H, Fan Y, Su E, et al (2025)

Mariculture increases microbially-driven carbon metabolism and sequestration in coastal ecosystems.

Journal of environmental management, 386:125756 pii:S0301-4797(25)01732-3 [Epub ahead of print].

Mariculture has expanded significantly in recent decades due to rising seafood demand and its contribution to ocean carbon sequestration. While the mechanisms of carbon sequestration in mariculture are well-established, the roles of microorganisms in sedimentary carbon sequestration have rarely been explored. How microorganisms mediate organic carbon metabolism and their effects on coastal carbon pools remain unclear. Here we tested the carbon fraction and contents, as well as extracellular hydrolase activities in macroalgae culture area, fish or abalone culture area, and control area without mariculture. We profiled microbial community composition and carbon metabolism characteristics in sediments through 16S rRNA gene amplicon sequencing and metagenomics. Our findings revealed that macroalgae culture areas exhibited a significantly greater potential for carbon sequestration than the control area, the concentration of TOC in seawater and the contents of SOC, DOC, and ROC in sediments were significantly (p < 0.05) increased by 18.93 %, 6.98 %, 33.98 %, and 18.30 % respectively. These results can be attributed to decreased activities of extracellular hydrolase and a lower abundance of carbon-degrading genes. Moreover, metabolic profiling identified taxa from families such as Alteromonadaceae, Pseudomonadaceae, Rhodobacteraceae, Enterobacteriaceae, and Flavobacteriaceae, which are highly metabolically flexible in utilizing a wide range of organic and inorganic energy sources, playing crucial roles in carbon formation. Their respiratory metabolism, such as sulfate reduction, thiosulfate oxidation, and denitrification as well as secondary metabolism products could also affect the formation and persistence of sedimentary carbon pools. Specifically, increased total nitrogen (TN) and nitrate-nitrogen (NO3[-]) could potentially enhance microbial degradation of organic carbon, decreasing carbon stock within coastal sediments. This study enhanced our understanding of microbial regulation of the organic carbon pool in the mariculture ecosystem.

RevDate: 2025-05-15

Orsi AS, Lemos Junior WJF, Alegbeleye OO, et al (2025)

Sodium chloride reduction in meat processing: Microbial shifts, spoilage risks, and metagenomic insights.

Meat science, 226:109848 pii:S0309-1740(25)00109-3 [Epub ahead of print].

This review evaluated the impact of sodium chloride (NaCl) reduction or substitution on the microbial ecology of meat products, with a focus on how these changes affect shelf life and safety. Reducing NaCl in fresh meat products promotes the growth of psychrotrophic spoilage bacteria, such as Pseudomonas sp., which thrive at low temperatures, and mesophilic pathogens like Escherichia coli and Staphylococcus aureus, particularly under inadequate storage conditions. In cured and fermented meats, such as salami, lowering NaCl levels disrupts the balance of salt-tolerant microorganisms, notably lactic acid bacteria (LAB) and coagulase-negative staphylococci, potentially leading to increased spoilage and pathogen proliferation. In smoked meats, the combination of reduced NaCl and altered microbial ecology, including a shift toward LAB dominance, may weaken the inhibitory effects on spore-forming bacteria like Clostridium botulinum. Additionally, using metagenomics, we explore the shifts in microbial communities observed in studies involving meat, revealing critical insights into the composition and diversity of bacteria in meat products, as well as the gaps in research on the impact of NaCl reduction and/or substitution on the microbiota. This review provides a comprehensive understanding of these microbial shifts, highlighting the distinct responses of psychrotrophic, mesophilic, and LAB groups to NaCl modification and the need to understand the effects of these alternatives on the meat product microbiome, as well as the neglected microorganisms that can affect the quality and safety of these products.

RevDate: 2025-05-15

Zhao F, Wu S, Shen X, et al (2025)

Metagenomic analysis reveals the diversity, transmission and potential ecological risks of yak nasal bacteria-carried antibiotic resistance genes in the Sichuan region of Qinghai-Tibet plateau.

Journal of hazardous materials, 494:138476 pii:S0304-3894(25)01391-3 [Epub ahead of print].

The Qinghai-Tibet Plateau (QTP) and yaks play respectively vital roles in global and plateau ecosystems. Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants. However, few studies have investigated the abundance and diversity of ARGs and mobile genetic elements (MGEs) in the yak upper respiratory tract and their surrounding pastures. Moreover, the possible pathways for ARG transmission within these ecosystems have not yet been elucidated. Therefore, we investigated the ARG profiles, MGE profiles, and ARG-carrying host bacteria in yaks and their pasture collected from Ganzi and Aba region in Sichuan Province. Metagenomic analyses showed that 22 ARG types and 5 MGEs types were identified in 18 samples. Multidrug resistance gene (mexT) and bacitracin resistance gene (bacA) was identiffed as hotspots, which may compromise medical treatment options. Co-occurrence network analysis revealed that 12 bacterial genera may be potential hosts at the genus level. The enrich of ARGs and MGEs diversity were observed in QTP (Sichuan province) pasture ecosystems which demands evidence-based interventions to mitigate ARGs transmission risks.

RevDate: 2025-05-15

Xu Z, Pei Y, Wang H, et al (2025)

Comparative analysis of gut microbiota-mediated bile acid profiles in Bufo gargarizans and Rana chensinensis tadpoles.

Comparative biochemistry and physiology. Part D, Genomics & proteomics, 55:101530 pii:S1744-117X(25)00119-4 [Epub ahead of print].

Bile acids (BAs) are cholesterol derivatives synthesized by the liver, exhibit variation between different species. Researchers have long appreciated that microbiota play the roles in the biotransformation of BAs. However, relatively few studies have been reported on microbial-mediated production and transformation of BAs in amphibians. Our focus here is principally on difference of intestinal microbial diversity and BAs profiles between two common amphibians, Bufo gargarizans (B. gargarizans) and Rana chensinensis (R. chensinensis) tadpoles, through intestinal targeted BAs metabolomics and fecal metagenomic sequencing. The results demonstrated that B. gargarizans possessed higher levels of total BAs and higher ratio of unconjugated / conjugated BAs. In addition, the relative abundance of microbiota with bile salt hydrolase (BSH) activity in B. gargarizans was significantly higher than that of R. chensinensis, which may facilitate the conversion of conjugated to unconjugated BAs. Meanwhile the higher prevalence of bile-acid-induced (BAI) gene encoding microbiota in R. chensinensis may promote the synthesis of deoxycholic acid (DCA). Furthermore, discrepancies in virulence factors (VFs) and energy metabolism were observed between the two species, which may be linked to differences in the microbiota. This study revealed substantial differences in intestinal microbes and BAs across amphibian species, emphasizing the significant impact of intestinal microbes on BAs metabolism.

RevDate: 2025-05-15

Li Y, Bhatt P, I Xagoraraki (2025)

In-depth comparison of untargeted and targeted sequencing for detecting virus diversity in wastewater.

Water research, 283:123803 pii:S0043-1354(25)00712-2 [Epub ahead of print].

Sequencing approaches may enable monitoring of a broad range of viruses in wastewater, including potential emerging and non-reportable human viruses. Considering the fact that metagenomic sequencing may be non-specific for low-abundance human viruses, integration of viral amplification and enrichment strategies are proposed to enhance the accurate detection of a broad range of human viruses in municipal wastewater. In this study, we focused on the in-depth comparison analysis of three untargeted amplification methods (Multiple Displace Amplification [MDA], Reverse Transcription - MDA [RT-MDA], and a PCR-based random amplification [PCR-based]) and one targeted method (Twist Comprehensive Viral Research Panel [TWIST]) for detecting virus diversity in wastewater. In addition, we included the comparisons of two extraction kits (Qiagen QIAamp VIRAL RNA Mini Kit and ZymoBIOMICSTM DNA/RNA Minipre Kit) and four virus identification tools (Diamond blast, Kraken2, VirSorter2 and geNomad) for a systematic study. Performances of Qiagen and Zymo extraction kits in recovering viruses and human viruses in wastewater were comparable. By the three untargeted methods we detected 12,808 contigs with lengths longer than 10,000 bp. No contig longer than 10,000 bp was detected by the targeted method. Presence of human viruses were analyzed further by comparing the viral contigs against a custom Swiss-Prot human virus database. There were 45 viruses that are potentially associated with human health found in wastewater, 8 of them were unique to the targeted method and 7 of them were unique to the three untargeted methods. Four enteric viruses Mamastrovirus, Norovirus, Rotavirus and Sapovirus were detected with high abundance in samples prepared with the targeted method. Dimensional scaling analysis demonstrated the divergent virus and human virus communities from the untargeted and targeted methods. Patterns of virus and human virus populations identified by Kraken2 and geNomad were similar. Presence of selected viruses (SARS-CoV-2 [N1&N2], SC2, RSV, Norovirus GI and GII) were confirmed with ddPCR. This work indicates integration of untargeted and targeted sequencing methods, and complementary ddPCR can ensure the accurate detection of known and novel viruses using wastewater surveillance.

RevDate: 2025-05-15

Ramar M, Wiscovitch-Russo R, Yano N, et al (2025)

Live bacteria in gut microbiome dictate asthma onset triggered by environmental particles via modulation of DNA methylation in dendritic cells.

Cell reports, 44(5):115684 pii:S2211-1247(25)00455-3 [Epub ahead of print].

Despite broad knowledge of the pathogenesis, our understanding of the origin of allergy and asthma remains poor, preventing etiotropic treatments. The gut microbiome is seen to be altered in asthmatics; however, proof of causality of the microbiome alterations is lacking. We report on gut microbiome transplantation (GMT) from mice predisposed to asthma by maternal exposure to pro-allergy environmental particles into naive recipients. This GMT confers asthma predisposition, and the effect is abrogated by gamma sterilization of the transplant material or by co-administration of antibacterials, indicating that viable bacteria are mediating the effect. Metagenomics identifies key changes in the "pro-asthma" microbiome, and metabolomics links the identified species to altered production of butyrate known to act on immune cells and epigenetic mechanisms. We further show that transplant recipients develop DNA methylation alterations in dendritic cells. Finally, dendritic cells with an altered methylome present allergen to T cells, and this effect is abrogated by an epigenetically acting drug in vitro.

RevDate: 2025-05-15
CmpDate: 2025-05-15

Al-Najim A, Hauns S, Tran VD, et al (2025)

HVSeeker: a deep-learning-based method for identification of host and viral DNA sequences.

GigaScience, 14:.

BACKGROUND: Bacteriophages are among the most abundant organisms on Earth, significantly impacting ecosystems and human society. The identification of viral sequences, especially novel ones, from mixed metagenomes is a critical first step in analyzing the viral components of host samples. This plays a key role in many downstream tasks. However, this is a challenging task due to their rapid evolution rate. The identification process typically involves two steps: distinguishing viral sequences from the host and identifying if they come from novel viral genomes. Traditional metagenomic techniques that rely on sequence similarity with known entities often fall short, especially when dealing with short or novel genomes. Meanwhile, deep learning has demonstrated its efficacy across various domains, including the bioinformatics field.

RESULTS: We have developed HVSeeker-a host/virus seeker method-based on deep learning to distinguish between bacterial and phage sequences. HVSeeker consists of two separate models: one analyzing DNA sequences and the other focusing on proteins. In addition to the robust architecture of HVSeeker, three distinct preprocessing methods were introduced to enhance the learning process: padding, contigs assembly, and sliding window. This method has shown promising results on sequences with various lengths, ranging from 200 to 1,500 base pairs. Tested on both NCBI and IMGVR databases, HVSeeker outperformed several methods from the literature such as Seeker, Rnn-VirSeeker, DeepVirFinder, and PPR-Meta. Moreover, when compared with other methods on benchmark datasets, HVSeeker has shown better performance, establishing its effectiveness in identifying unknown phage genomes.

CONCLUSIONS: These results demonstrate the exceptional structure of HVSeeker, which encompasses both the preprocessing methods and the model design. The advancements provided by HVSeeker are significant for identifying viral genomes and developing new therapeutic approaches, such as phage therapy. Therefore, HVSeeker serves as an essential tool in prokaryotic and phage taxonomy, offering a crucial first step toward analyzing the host-viral component of samples by identifying the host and viral sequences in mixed metagenomes.

RevDate: 2025-05-15

Li X, He N, Wang H, et al (2025)

Therapeutic effect of Faecalibacterium longum CM04-06 on DSS-induced ulcerative colitis in mice.

Journal of applied microbiology pii:8132930 [Epub ahead of print].

AIMS: This study explores the impact of Faecalibacterium longum CM04-06 on inflammatory bowel disease (IBD) by regulating gut microbiota in mice.

METHODS AND RESULTS: We reanalyzed the distribution of the CM04-06 genome in the metagenome of the IBD cohort and observed a significantly higher abundance of CM04-06 in healthy individuals compared to patients with UC or CD. The prophylactic administration of CM04-06 was evaluated for its effects on intestinal microbial diversity and community composition after a two-week trial in mice. The intestinal microbiota was characterized using metagenomic sequencing of fecal samples on the DNBSEQ platform. CM04-06 treatment resulted in a significant reduction in the Disease Activity Index (DAI) and histological scores, as well as a decrease in the levels of pro-inflammatory cytokines, including IL-1β, IL-6, and TNF-α, in both the colon and serum of DSS-induced mice. Furthermore, supplementation with CM04-06 significantly reduced the levels of pro-inflammatory cytokines in both the colon and serum. Additionally, CM04-06 enhanced the integrity of the intestinal epithelial barrier by increasing the expression of tight junction proteins and mucin. Moreover, we observed greater abundances of Faecalibaculum rodentium, Alistipes onderdonkii, Alistipes shahii, and Bifidobacterium animalis after CM04-06 treatment.

CONCLUSIONS: CM04-06 prevents and alleviates intestinal inflammation by modulating the composition of the microbiota community, increasing the abundance of beneficial probiotics, and suppressing pro-inflammatory cytokine levels.

RevDate: 2025-05-15

Kok CR, Thissen JB, Cerroni M, et al (2025)

Field expedient stool collection methods for gut microbiome analysis in deployed military environments.

mSphere [Epub ahead of print].

Field expedient devices and protocols for the collection, storage, and shipment of stool samples in deployed settings are needed for the advancement of microbiome research in military health. Relevant assessments include the evaluation of microbiome signatures associated with susceptibility to travelers' diarrhea and recovery of gut function following infection. However, inherent biases in microbial measurements due to preservatives and sampling methods are unclear and should be assessed for an accurate evaluation of the microbiome. We performed shotgun metagenomic sequencing and compared the microbiome composition in paired fecal samples collected using Flinters Technology Associates (FTA) cards and OMNIgene (OG) Gut tubes, prior to and during international travel, from 49 adult participants, 39 of whom remained asymptomatic and 10 experienced travelers' diarrhea. Higher concentrations of nucleic acid and sequencing libraries were observed in OG samples. A majority of genera (82.9%) were detected with both methods, and detections of genera limited to one collection method were not highly prevalent across samples and were present in extremely low relative abundances (<0.01%). Differences in beta diversity were largely explained by inter-individuality of microbiome composition, followed by the effect of collection method and timepoint-disease states. Differential abundance analysis indicated that Corynebacterium and Blautia were consistently higher in abundance across all groups with FTA and OG collection, respectively. The observed differences in microbiome composition between methods suggest the need for consistent and standardized protocols within a study. Overall, the data presented here could help guide the future design of fecal microbiome study protocols in field and military deployment settings.IMPORTANCEThe assessment of field-deployable methods for fecal sample collection and storage is required to reliably capture samples collected in remote and austere locations. This study describes a comparative metagenomics analysis between samples collected by two different commercially available methods in a military-deployed setting. The results presented here are foundational for the future design of fecal microbiome study protocols in an operational context.

RevDate: 2025-05-15
CmpDate: 2025-05-15

Jansen D, Deleu S, Caenepeel C, et al (2025)

Virome drift in ulcerative colitis patients: faecal microbiota transplantation results in minimal phage engraftment dominated by microviruses.

Gut microbes, 17(1):2499575.

Ulcerative colitis (UC) is an inflammatory bowel disease characterized by recurrent colonic inflammation. Standard treatments focus on controlling inflammation but remain ineffective for one-third of patients. This underscores the need for alternative approaches, such as fecal microbiota transplantation (FMT), which transfers healthy donor microbiota to patients. The role of viruses in this process, however, remains underexplored. To address this, we analyzed the gut virome using metagenomic sequencing of enriched viral particles from 320 longitudinal fecal samples of 44 patients enrolled in the RESTORE-UC FMT trial. Patients were treated with FMTs from healthy donors (allogenic, treatment) or themselves (autologous, control). We found that colonic inflammation, both its presence and location, had a greater impact on the gut virome than FMT itself. In autologous FMT patients, the virome was unstable and showed rapid divergence over time, a phenomenon we termed virome drift. In allogenic FMT patients, the virome temporarily shifted toward the healthy donor, lasting up to 5 weeks and primarily driven by microviruses. Notably, two distinct virome configurations were identified and linked to either healthy donors or patients. In conclusion, inflammation strongly affects the gut virome in UC patients, which may lead to instability and obstruct the engraftment of allogeneic FMT.

RevDate: 2025-05-16

Lehner MD, Ulsemer P, S Christochowitz (2025)

Menthacarin, a proprietary combination of peppermint and caraway oil, alters cultured human fecal microbiota composition, resulting in increased SCFA production.

Frontiers in pharmacology, 16:1569052.

BACKGROUND: Disruptions in the gut microbiota metabolism may contribute to the pathophysiology of gut-brain interaction disorders, and correction of intestinal dysbiosis is considered a promising therapeutic approach. Menthacarin, a proprietary fixed combination of Mentha x piperita L. and Carum carvi L. essential oils, is used clinically for the treatment of functional dyspepsia and irritable bowel syndrome. Rodent model data indicate that treatment effects of Menthacarin on visceral hypersensitivity could be mediated via the normalization of gut dysbiosis. However, the impact of Menthacarin on human bacterial gut microbiota has not yet been studied.

AIM: The aim of the present study was to assess whether Menthacarin affects the composition and metabolic activity of human fecal microbiota.

METHODS: Fecal slurry samples from 10 healthy volunteers were cultivated for 36 h under anoxic conditions with and without Menthacarin. Relative bacterial abundance at the phylum and genus levels was evaluated using 16S rRNA metagenomic analysis. Short-chain fatty acids (SCFAs) in the supernatants were measured using the LC-MS technology.

RESULTS: Menthacarin induced robust changes in microbial composition at both the phylum and genus levels among the 10 donor microbiomes. The relative abundance of Firmicutes (+13.6 ± 8.6%) and Actinobacteria (+54.9 ± 47.6%) significantly increased, whereas that of Bacteroidetes (-27.7% ± 21.9%) and Proteobacteria (-25.7% ± 12.3%) significantly decreased in the presence of Menthacarin. At the genus level, the most notable changes were significant increases in Bifidobacterium (+105.1 ± 78.4%) and several SCFA-producing genera accompanied by a significant decrease in genera containing members involved in pro-inflammatory processes. In addition, Menthacarin significantly increased the levels of several SCFAs, namely, propionate, butyrate, isobutyrate, valerate, and isovalerate.

CONCLUSION: Menthacarin alters the microbiota composition and enhances SCFA production in human microbiota samples under in vitro conditions. These effects may contribute to the clinical benefits observed with Menthacarin treatment.

RevDate: 2025-05-16

Lanclos VC, Feng X, Cheng C, et al (2025)

New isolates refine the ecophysiology of the Roseobacter CHAB-I-5 lineage.

ISME communications, 5(1):ycaf068.

The CHAB-I-5 cluster is a pelagic lineage that can comprise a significant proportion of all Roseobacters in surface oceans and has predicted roles in biogeochemical cycling via heterotrophy, aerobic anoxygenic photosynthesis (AAnP), CO oxidation, DMSP degradation, and other metabolisms. Though cultures of CHAB-I-5 have been reported, none have been explored and the best-known representative, strain SB2, was lost from culture after obtaining the genome sequence. We have isolated two new CHAB-I-5 representatives, strains US3C007 and FZCC0083, and assembled complete, circularized genomes with 98.7% and 92.5% average nucleotide identities with the SB2 genome. Comparison of these three with 49 other unique CHAB-I-5 metagenome-assembled and single-cell genomes indicated that the cluster represents a genus with two species, and we identified subtle differences in genomic content between the two species subclusters. Metagenomic recruitment from over fourteen hundred samples expanded their known global distribution and highlighted both isolated strains as representative members of the clade. FZCC0083 grew over twice as fast as US3C007 and over a wider range of temperatures. The axenic culture of US3C007 occurs as pleomorphic cells with most exhibiting a coccobacillus/vibrioid shape. We propose the name Candidatus Thalassovivens spotae, gen nov., sp. nov. for the type strain US3C007[T] (= ATCC TSD-433[T] = NCMA B160[T]).

RevDate: 2025-05-16

Yu F, Guo Y, Li Y, et al (2025)

Liver abscess and septic shock due to Clostridium perfringens infection: a case report and literature review.

Frontiers in medicine, 12:1575454.

Clostridium perfringens causes liver abscesses with a low incidence, rapid progression, and high mortality. Within a few days or even within 24 h, patients may progress from a liver abscess to sepsis, multi-organ failure, and potentially death. Diagnosing Clostridium perfringens infection by routine microbiological testing (CMT) is often challenging. Here, we present a patient with negative blood cultures who was ultimately diagnosed with a liver abscess due to Clostridium perfringens infection, confirmed by metagenomic next-generation sequencing (mNGS). The patient initially presented with fever only, and his blood cultures were negative. Subsequently, the patient's condition progressed rapidly, and he developed signs of septic shock. Immediately after admission to the ICU, he received combined anti-infective therapy with meropenem and tigecycline, as well as urgent ultrasound-guided puncture and drainage. Blood mNGS identified Clostridium perfringens and a variety of anaerobic bacteria, confirming that the pathogen had been covered by empirical antibiotics. Continued anti-infective therapy and drainage improved the patient's symptoms, and he was eventually discharged from the hospital. Clinicians should be highly suspicious of liver abscesses with negative blood cultures. The use of mNGS to identify the pathogen, appropriate antibiotics, and abscess aspiration and drainage are key to patient survival.

RevDate: 2025-05-16

Yang Z, Zhou S, Yang Z, et al (2025)

Metagenomic next-generation sequencing enabled diagnosis of Aspergillus spondylitis in an immunocompetent patient: a case report and literature review.

Frontiers in medicine, 12:1575363.

BACKGROUND: Aspergillus fumigatus spondylitis is a rare fungal spondylitis that often occurs in immunocompromised patients. This article reports a case of Aspergillus spondylitis with specific image signs, which is rarely reported in an immunocompetent patient.

CASE PRESENTATION: This is a case of L3-4 segmental Aspergillus spondylitis diagnosed. The diagnosis was confirmed by intraoperative metagenomic next-generation sequencing (mNGS) testing of the diseased tissue. The patient was treated with voriconazole and underwent surgical debridement and internal fixation with pedicle screws.

CONCLUSION: The diagnosis of Aspergillus spondylitis is often delayed or missed. Doctors should consider Aspergillus spondylitis in the differential diagnosis of unexplained low back pain so that appropriate treatment can be administered to prevent spinal cord injury and disability. Aspergillus spondylitis usually results in endplate inflammatory response line on fluid or enhancement sequences and a diffuse low signal in the diseased vertebral body on T2-weighted imaging (T2WI). It also results in large paraspinal abscesses, which requires further research to better differentiate between Aspergillus spondylitis and tuberculous spondylitis. Prompt diagnosis and treatment can improve the patient's prognosis.

RevDate: 2025-05-15
CmpDate: 2025-05-15

Wang N, Wu M, Gu W, et al (2025)

MSFT-transformer: a multistage fusion tabular transformer for disease prediction using metagenomic data.

Briefings in bioinformatics, 26(3):.

More and more recent studies highlight the crucial role of the human microbiome in maintaining health, while modern advancements in metagenomic sequencing technologies have been accumulating data that are associated with human diseases. Although metagenomic data offer rich, multifaceted information, including taxonomic and functional abundance profiles, their full potential remains underutilized, as most approaches rely only on one type of information to discover and understand their related correlations with respect to disease occurrences. To address this limitation, we propose a multistage fusion tabular transformer architecture (MSFT-Transformer), aiming to effectively integrate various types of high-dimensional tabular information extracted from metagenomic data. Its multistage fusion strategy consists of three modules: a fusion-aware feature extraction module in the early stage to improve the extracted information from inputs, an alignment-enhanced fusion module in the mid stage to enforce the retainment of desired information in cross-modal learning, and an integrated feature decision layer in the late stage to incorporate desired cross-modal information. We conduct extensive experiments to evaluate the performance of MSFT-Transformer over state-of-the-art models on five standard datasets. Our results indicate that MSFT-Transformer provides stable performance gains with reduced computational costs. An ablation study illustrates the contributions of all three models compared with a reference multistage fusion transformer without these novel strategies. The result analysis implies the significant potential of the proposed model in future disease prediction with metagenomic data.

RevDate: 2025-05-16
CmpDate: 2025-05-15

Zhang Y, Liu H, H Jing (2025)

Community differences and potential function along the particle size spectrum of microbes in the twilight zone.

Microbiome, 13(1):121.

BACKGROUND: The twilight zone, which extends from the base of the euphotic zone to a depth of 1000 m, is the major area of particulate organic carbon (POC) remineralization in the ocean. However, little is known about the microbial community and metabolic activity that are directly associated with POC remineralization in this consistently underexplored realm. Here, we utilized a large-volume in situ water transfer system to collect the microbes on different-sized particles from the twilight zone in three regions and analyzed their composition and metabolic function by metagenomic analysis.

RESULTS: Distinct prokaryotic communities with significantly lower diversity and less endemic species were detected on particles in the South East Asian Time-series Study (SEATS) compared with the other two regions, perhaps due to the in situ physicochemical conditions and low labile nutrient availability in this region. Observable transitions in community composition and function at the upper and lower boundaries of the twilight zone suggest that microbes respond differently to (and potentially drive the transformation of) POC through this zone. Substantial variations among different particle sizes were observed, with smaller particles typically exhibiting lower diversity but harboring a greater abundance of carbon degradation-associated genes than the larger particles. Such a pattern might arise due to the relatively larger surface area of the smaller particles relative to their volume, which likely provides more sites for microbial colonization, increasing their chance of being remineralized. This makes them less likely to be transferred to the deep ocean, and thus, they contribute more to carbon recycling than to long-term sequestration. Both contig-based and metagenome-assembled genome-(MAG-) based analyses revealed a high diversity of the Carbohydrate-Active enZymes (CAZy) family. This indicates the versatile carbohydrate metabolisms of the microbial communities associated with sinking particles that modulate the remineralization and export of POC in the twilight zone.

CONCLUSION: Our study reveals significant shifts in microbial community composition and function in the twilight zone, with clear differences among the three particle sizes. Microbes with diverse metabolic potential exhibited different responses to the POC entering the twilight zone and also collectively drove the transformation of POC through this zone. These findings provided insights into the diversity of prokaryotes in sinking particles and their roles in POC remineralization and export in marine ecosystems. Video Abstract.

RevDate: 2025-05-14

Purse C, Parker A, James SA, et al (2025)

Intestinal microbiota profiles of captive-bred cynomolgus macaques reveal influence of biogeography and age.

Animal microbiome, 7(1):47.

BACKGROUND: Age-associated changes to the intestinal microbiome may be linked to inflammageing and the development of age-related chronic diseases. Cynomolgus macaques, a common animal model in biomedical research, have strong genetic physiological similarities to humans and may serve as beneficial models for the effect of age on the human microbiome. However, age-associated changes to their intestinal microbiome have previously only been investigated in faecal samples. Here, we have characterised and investigated the effects of age in the cynomolgus macaque intestinal tract in luminal samples from both the small and large intestine.

RESULTS: Whole metagenomic shotgun sequencing was used to analyse the microbial communities in intestinal content obtained from six different intestinal regions, covering the duodenum to distal colon, of 24 healthy, captive-bred cynomolgus macaques, ranging in age from 4 to 20 years. Both reference-based and assembly-based computational profiling approaches were used to analyse changes to intestinal microbiota composition and metabolic potential associated with intestinal biogeography and age. Reference-based computational profiling revealed a significant and progressive increase in both species richness and evenness along the intestinal tract. The microbial community composition also significantly differed between the small intestine, caecum, and colon. Notably, no significant changes in the taxonomic abundance of individual taxa with age were found except when sex was included as a covariate. Additionally, using an assembly-based computational profiling approach, 156 putative novel bacterial and archaeal species were identified.

CONCLUSIONS: We observed limited effects of age on the composition of the luminal microbiota in the profiled regions of the intestinal tract except when sex was included as a covariate. The enteric microbial communities of the small and the large intestine were, however, distinct, highlighting the limitations of frequently used faecal microbial profiling as a proxy for the intestinal microbiota. The identification of a number of putative novel microbial taxa contributes to knowledge of the full diversity of the cynomolgus macaque intestinal microbiome.

RevDate: 2025-05-14
CmpDate: 2025-05-15

Song XL, Wang ZJ, Yin XW, et al (2025)

The impact of nitrogen deposition on nitrogen metabolism in ryegrass lawn with different soil nutrient levels.

Scientific reports, 15(1):16755.

Nitrogen deposition is a crucial factor in global change, which is widespread across various regions globally. It has drawn extensive attention due to its direct modification of soil nitrogen retention and nitrogen species distribution, thereby influencing nitrogen metabolism across entire ecosystems. Previous studies on its influence on nitrogen metabolism have not reached a consensus. In an urban ryegrass lawn mesocosm experiment, we set two levels of nitrogen deposition and soil nutrients respectively, aiming to study the impacts of these factors on the N-cycling process through metagenomic analysis. The results demonstrated nitrogen deposition increased nitrification, nitrogen fixation, denitrification, and dissimilatory nitrate reduction, but decreased assimilatory nitrate reduction in the nitrogen metabolism process by changing soil nitrogen availability and the abundance of N-cycling functional genes in the soil microbial community. The soil nutrient levels exhibited effects opposite to those of nitrogen deposition, negatively impacting nitrification, denitrification, and nitrogen fixation in the nitrogen metabolism process. This work further elucidates the impacts of nitrogen deposition on the ecological functions of the ryegrass lawn with different soil nutrient levels, and predicts the potential impacts of intensified nitrogen deposition on these ecological functions. It provides valuable theoretical support for understanding and evaluating complex ecological interactions.

RevDate: 2025-05-14

Krishnavajhala A, Gingras MC, Urquieta E, et al (2025)

The GENESTAR manual for biospecimen collection biobanking and omics data generation from commercial space missions.

NPJ microgravity, 11(1):16.

The surge in commercial and civilian spaceflight enables the systematic and longitudinal, large-scale biospecimen collection to understand the prospective effects of space travel on human health. The Genomics and Space Medicine (Space Omics) project at BCM-HGSC involves a comprehensive biospecimen collection plan from commercial/private space flight participants. The manuscript addresses the critical gaps in the biospecimen collection process including details of the informed consent process, a provision for subjects to obtain custom CLIA-WGS reports, a data dictionary and a LIMS enabled biobank. The manuscript also discusses the biospecimens collection, processing methodologies and nucleic acid suitability for Omics data generation. Results from Axiom-2 mission where, 339 biospecimens were collected using 'Genomic Evaluation of Space Travel and Research (GENESTAR)' manual, at two different sites, showed that 98% of the blood samples and 91.6% of the non-blood samples passed the QC requirements for Omics assays, underscoring the reliability and effectiveness of the GENESTAR manual.

RevDate: 2025-05-14
CmpDate: 2025-05-15

Serivichyaswat PT, Scholte T, Wilms T, et al (2025)

Metagenomic biodiversity assessment within an offshore wind farm.

Scientific reports, 15(1):16786.

Environmental DNA (eDNA) analysis can be a powerful tool for monitoring biodiversity and assessing human impacts on ecosystems. In this study, we employed a genome-wide metagenomic eDNA approach to assess the marine biodiversity within and around the Horns Rev 1 offshore wind farm in the Danish North Sea. Seawater samples were collected from both within the windfarm and surrounding control sites, sequenced, and analyzed using a combination of DNA k-mer matching and alignment-based classification methods. We identified a wide range of species across the tree of life-highlighting the species richness of this marine ecosystem. Our results revealed a high degree of species diversity congruence between the wind farm and control sites. While this could suggest minimal ecological disruption of the wind farm, we cannot rule out that the influence of ocean currents and water mixing the DNA from different regions dominate the species detection. We detected bioindicator species, such as Thalassiosira, Phaeocystis and Skeletonema, which can provide insights into water quality. Our metagenomic approach also enabled us to obtain population genomics insights for species, such as the European anchovy (Engraulis encrasicolus) and the diatom Rhizosolenia setigera, and genetically confirmed the origin of the invasive Sea walnut (Mnemiopsis leidyi) in the North Sea. This study highlights the potential of genome-wide eDNA metagenomics as a framework for assessing marine biodiversity and detecting population-level genetic signals, contributing to informed and scalable ecosystem monitoring strategies.

RevDate: 2025-05-14

Wang P, He D, Zhao J, et al (2025)

Transition from Anammox to Feammox metabolic modes: Regulation strategies for nitrite in Anammox enrichment cultures.

Bioresource technology pii:S0960-8524(25)00640-6 [Epub ahead of print].

This studyachievedthe metabolic transition from anaerobic ammonium oxidation (Anammox) to Fe(III)-mediated ammonium oxidation (Feammox)usingiron-carbon micro-electrolytic spheres as a slow-release iron sourcethrougha stepwise reductionin influent NO2[-]-N concentration. The results demonstrated that sustained Feammox activitywas governed bynitrate-dependent ferrous oxidation (NDFO) metabolismcombined withoxygen-regulated Fe(III) regeneration,resulting ina peak total nitrogen removal efficiency of 91.6 %at40 mg/L NO2[-]-N.Whileexclusive NH4[+]-N feeding inhibited Feammox activity,this suppression was reversible upon NO2[-]-N supplementation. Intriguingly, Anammox activityremained robustdespite decreasing NO2[-]-N levelsand showedsignificant positive correlation with Feammox activity,suggesting shared metabolic modules. Metagenomic profilingfurther identifiedCa. Brocadia as the core functional genus driving NH4[+]-N oxidation,highlighting its niche adaptationin iron-mediated systems.These mechanistic insights establish a framework fordesigning energy-efficient nitrogen removal processesleveraging iron-redox cycling.

RevDate: 2025-05-14

Wu S, Zhang N, Q Wan (2025)

Disulfide bonds enhance thermal stability and thumb region drives activity of the glycoside hydrolase 11 xylanase rMxyl[cd].

Journal of structural biology pii:S1047-8477(25)00044-9 [Epub ahead of print].

Thermostable enzymes have significant advantages in industries, yet uncovering novel candidates with superior properties remains a scientific pursuit. This study identified rMxyl[cd], a glycoside hydrolase 11 family thermophilic xylanase from compost-soil metagenome, which exhibited a high specific activity of 5954 U·mg[-1] at pH 5.5 and 80°C. rMxyl[cd] was crystallized and diffracted to 1.5 Å resolution. Compared to the mesophilic xylanase Xyn II, rMxyl[cd] exhibits a more compact architecture. Notably, B-factor analysis reveals a uniquely flexible thumb region, hinting at its critical role in the enzyme's catalytic mechanism. rMxyl[cd] contains two disulfide bonds in the thumb and the N-terminal regions. Breaking these disulfide bonds by mutagenesis has dramatically decreased activities and thermostability. Conversely, introducing an extra disulfide bond at the N-terminal region of its α-helix extended its half-life for more than five folds at 80°C. Our studies firmly establish that the disulfide bonds are essential for its high thermal stability and the flexibility of the thumb region is crucial for its activity. Comparing the rMxyl[cd] crystal structure with the AlphaFold2-predicted model shows overall similarity, but the crystal structure offers higher local accuracy, especially in key functional regions. These findings not only deepen our understanding of the structure-function relationship of thermophilic xylanases but also inform a rational design of industrial enzymes.

RevDate: 2025-05-14

Silvester R, Perry WB, Webster G, et al (2025)

Metagenomic profiling of hospital wastewater: A comprehensive national scale analysis of antimicrobial resistance genes and opportunistic pathogens.

The Journal of infection pii:S0163-4453(25)00097-0 [Epub ahead of print].

BACKGROUND: Healthcare settings are recognised as potential hotspots for the emergence and spread of antimicrobial resistance (AMR).

METHOD: Metagenomic sequencing was conducted on a national scale using wastewater from hospitals across Wales to screen for antimicrobial resistance genes (ARGs) and opportunistic pathogens.

RESULTS: The total abundance and diversity of ARGs varied significantly across the hospitals. Genes conferring resistance to aminoglycosides, beta-lactams, and Macrolide-Lincosamide-Streptogramin-class antibiotics were predominant, with distinct resistome patterns emerging spatially. OXA-type beta-lactamases were the dominant ARG types. Spatial variability was observed in the distribution of the "big five" carbapenemases (KPC, IMP, VIM, NDM, OXA-48-like) and mcr genes, as well as WHO-listed fungal priority pathogens and Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp., and Escherichia coli (ESKAPEE) pathogens. Furthermore, antibiotic concentrations in the effluents often exceeded risk quotients, posing a substantial risk for AMR emergence.

CONCLUSIONS: Overall, the study highlights the effectiveness of combining wastewater-based epidemiology with metagenomics to gain critical insights into the distinct resistome and microbiome profiles in hospital settings. Tailored strategies are essential to mitigate the spread of antibiotics, clinically relevant ARGs and pathogens in these settings. This study underscores the necessity of implementing pre-treatment processes for hospital effluents before release into community sewers and environmental waters to curb the spread of these micro-pollutants.

AVAILABILITY OF DATA: The data will be made available upon request.

RevDate: 2025-05-14

Antonaru LA, Rad-Menéndez C, Mbedi S, et al (2025)

Evolution of far-red light photoacclimation in cyanobacteria.

Current biology : CB pii:S0960-9822(25)00502-0 [Epub ahead of print].

Cyanobacteria oxygenated the atmosphere of early Earth and continue to be key players in global carbon and nitrogen cycles. A phylogenetically diverse subset of extant cyanobacteria can perform photosynthesis with far-red light through a process called far-red light photoacclimation, or FaRLiP. This phenotype is enabled by a cluster of ∼20 genes and involves the synthesis of red-shifted chlorophylls d and f, together with paralogs of the ubiquitous photosynthetic machinery used in visible light. The FaRLiP gene cluster is present in diverse, environmentally important cyanobacterial groups, but its origin, evolutionary history, and connection to early biotic environments have remained unclear. This study takes advantage of the recent increase in (meta)genomic data to help clarify this issue: sequence data mining, metagenomic assembly, and phylogenetic tree networks were used to recover more than 600 new FaRLiP gene sequences, corresponding to 51 new gene clusters. These data enable high-resolution phylogenetics and-by relying on multiple gene trees, together with gene arrangement conservation-support FaRLiP appearing early in cyanobacterial evolution. Sampling information shows that considerable FaRLiP diversity can be observed in microbialites to the present day, and we hypothesize that the process was associated with the formation of microbial mats and stromatolites in the early Paleoproterozoic. The ancestral FaRLiP cluster was reconstructed, revealing features that have been maintained for billions of years. Overall, far-red-light-driven oxygenic photosynthesis may have played a significant role in Earth's early history.

RevDate: 2025-05-14

Yuan L, Chen Y, Xie M, et al (2025)

Utility of clinical metagenomics in complex infections: Cryptococcal meningitis complicated by Nocardia brain abscess.

Diagnostic microbiology and infectious disease, 113(1):116895 pii:S0732-8893(25)00218-4 [Epub ahead of print].

Nocardia farcinica brain abscess (BA) is a rare yet life-threatening infection of the central nervous system (CNS) that predominantly affects immunocompromised patients. Its nonspecific symptoms often lead to delayed diagnosis and poor outcomes. Early diagnosis and precise treatment are essential to improve the prognosis of patients. We report the rare case of a 75-year-old man with IgG4-related disease undergoing long-term methylprednisolone therapy who presented with a N. farcinica brain abscess. The patient initially presented with cryptococcal meningitis but exhibited persistent symptoms despite standard antifungal treatment. Follow-up neuroimaging revealed new intracranial abscess formations. Metagenomic next-generation sequencing (mNGS) of brain tissue and cerebrospinal fluid (CSF) identified abundant N. farcinica-specific sequences, confirming a concurrent Nocardia brain abscess complicating the cryptococcal infection. The patient's condition gradually improved with timely antibiotic treatment and is currently in recovery. This case underscores the heightened risk of sequential opportunistic infections in immunocompromised individuals and exemplifies the clinical value of mNGS in detecting rare infectious diseases. We further conducted a systematic review of patients with Nocardia central nervous system infections confirmed by mNGS, analyzing their clinical presentations, laboratory parameters, therapeutic regimens, and prognostic outcomes. In summary, our study demonstrates that mNGS offers significant diagnostic advantages compared to conventional microbiological methods for uncommon infections. These findings provide clinically actionable, evidence-based guidance for the diagnosis and management of Nocardia brain abscesses.

RevDate: 2025-05-14

Mo S, Wu X, Kashif M, et al (2025)

Effects of Spartina alterniflora invasion on carbon fixation and sulfate reduction in a subtropical marine mangrove ecosystem.

Marine pollution bulletin, 217:118128 pii:S0025-326X(25)00603-4 [Epub ahead of print].

Mangrove sediments host diverse microbial communities that are crucial for carbon fixation, but their functions and pathways in subtropical ecosystems-particularly under Spartina alterniflora invasion and across varying sediment depths-remain unclear. This study employed metagenomic and qPCR analyses to explore microbial carbon fixation in Rhizophora stylosa, S. alterniflora, and bare beach habitats. Environmental factors like Cd, sulfide, pH, and salinity significantly influenced carbon fixation and sulfate reduction. Specifically, the invasion increased the abundance of key carbon fixation genes, including aclA/B, cbbL, and korA, which are involved in the Calvin-Benson-Bassham (CBB) and Arnon-Buchanan (rTCA) cycles, respectively. This shift in gene abundance was accompanied by elevated Ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO) activity (0.47-21.82 nmol CO2 g[-1] soil min[-1]), suggesting a potential increase in microbial CO2 fixation rates in S. alterniflora-invaded sediments. Sediment depth also affected the distribution of carbon fixation genes and carbon-metabolizing microbes. Desulfobacterota were identified as major contributors to carbon fixation via both the rTCA and CBB cycles. Moreover, a strong correlation was observed between carbon fixation and sulfate reduction. These findings reveal how S. alterniflora invasion impacts carbon fixation and enhance our understanding of the mangrove ecosystems' role in climate change regulation.

RevDate: 2025-05-14

Ahmad W, Coffman L, Ray R, et al (2025)

Flooding episodes and seed treatment influence the microbiome diversity and function in the soybean root and rhizosphere.

The Science of the total environment, 982:179554 pii:S0048-9697(25)01195-7 [Epub ahead of print].

Climate change-related events such as flooding have threatened crop productivity, agricultural sustainability, and global food security by causing hypoxic conditions. Such conditions impaire root development and nutrient acquisition, and alter root rhizospheric microbial communities that are vital for plant health and productivity. Seed treatment with pathogen protection have been key to maintaining early seed germination and plant productivity in field conditions. Still, their role in flooding stress and microbiome diversity and functionality in soybeans is poorly understood. Here, we performed field-based investigations to understand the impact of flooding episodes (0, 3, and 7 days after floodings; DAF) and seed treatment (Cruiser MAXX) on soybean plant growth and rhizosphere microbiome diversity and functionality. Flooding episodes significantly reduced seed yield (746 kg ha[-1]) compared to untreated control. However, the seed treatment increased plant height and pods per plant (3-DAF) and reduced flood injury by 33 % (7-DAF). The shotgun metagenomic analysis showed that seed treatment significantly enhanced the microbial community in rhizospheric soil. Flooding episodes impacted the microbial communities with higher abundance at 3-DAF than at 7-DAF. Flooding stress reduced the microbial diversity, although Proteobacteria increased as root endophytes. Seed treatment and flooding combinations decreased microbiome functionality and reduced gene counts for phytohormone biosynthesis, fermentation, nitrogen, symbiosis, and degradation pathways. Similarly, flooding stress shifted the carbohydrate synthesis to a more specialized substrate. These findings enhance understanding of soybean root and rhizosphere microbiome diversity and functionality dynamics during flooding stress and provide a platform to develop sustainable agricultural practices for enhancing soybean stress tolerance to flooding.

RevDate: 2025-05-14

Wang Y, Huang S, He J, et al (2025)

Unveiling the dynamic viral landscape across developmental stages of cold seep ecosystems: Implications for global marine biogeochemistry.

Journal of hazardous materials, 494:138594 pii:S0304-3894(25)01510-9 [Epub ahead of print].

Cold seeps are methane-rich ecosystems playing pivotal roles in global biogeochemical cycling, yet their viral communities remain underexplored. We present the first comprehensive viral metagenomic analysis across developmental stages of the Haima Cold Seep. Characterizing viral assemblages from chemoautotrophic, mature, and extinct seep sediments revealed 4272 viral operational taxonomic units, with 77 % representing novel lineages, highlighting cold seeps' unique viral diversity. Viral community structure and diversity varied significantly by seep stage, with highest diversity in the chemoautotrophic stage. While Siphoviridae and Microviridae dominated, their relative abundances shifted with maturity. Gammaproteobacteria emerged as predominant viral hosts, exhibiting distinct interaction patterns across stages. Notably, the chemoautotrophic stage harbored the highest abundance and diversity of virus-encoded auxiliary metabolic genes (AMGs; ∼450 AMGs), with significantly enriched carbohydrate metabolism and central carbon pathway genes (2.2-fold and 1.8-fold higher respectively, p < 0.005), amino acid metabolism (1.9-fold, p = 0.003), and sulfur relay system genes (2.0-fold, p = 0.002). In contrast, the mature stage exhibited distinct enrichment in energy metabolism genes (up to 3.9-fold difference between sites, p < 0.001) and xenobiotics degradation pathways, suggesting stage-specific viral impacts on biogeochemical cycling. Lytic lifestyles prevailed across stages, indicating dynamic virus-host interactions during seep development. These findings unveil complex viral ecology in cold seeps, with potential influences on microbial community structure and biogeochemical processes. Providing a foundation for understanding viral roles in cold seep ecosystem functioning and biogeochemical cycles, this study has implications for marine microbial ecology and environmental biotechnology.

RevDate: 2025-05-14

Yu S, Cao T, Xu Z, et al (2025)

Metagenomic next-generation sequencing (mNGS) identified Clostridium perfringens infection presenting as acute hemolysis after surgery.

Journal of infection and public health, 18(8):102798 pii:S1876-0341(25)00147-9 [Epub ahead of print].

Clostridium perfringens (C. perfringens) septicaemia is a rare, but rapidly fatal infection, characterized by massive hemolysis. In numerous documented instances, the patient was not diagnosed in time due to the absence of typical clinical features. In order to enhance diagnostic accuracy, metagenomic next-generation sequencing (mNGS) has been adopted as a novel approach to pathogen identification. CASE PRESENTATION: A 67-year-old male who had undergone transcatheter arterial chemoembolization (TACE) surgery four days earlier presented with severe anemia, and laboratory investigations disclosed intravascular hemolysis. Swift and accurate identification was imperative, resulting in the confirmation of mNGS analysis, his medical history, clinical symptoms, physical signs, additional tests, and C. perfringens as the causative pathogen of hemolysis. After successful treatment with effective antibiotics, the patient recovered and was discharged from the hospital after 19 days. CONCLUSIONS: mNGS achieves expedited diagnostic turnaround time through rapid pathogen identification, significantly surpassing conventional culture methods. This may enable the diagnosis of atypical cases of C. perfringens infection, which can cause rapid systemic shock, renal failure, intravascular hemolysis, and even death.

RevDate: 2025-05-14

Guo Y, Cheng S, Fang H, et al (2025)

Water regime alters microbial mechanisms of N2O emission in metal-contaminated paddy soils.

Ecotoxicology and environmental safety, 298:118304 pii:S0147-6513(25)00640-2 [Epub ahead of print].

Microorganisms are essential for soil nitrous oxide (N2O) emissions through participating in key nitrogen (N)-related processes. However, the effect of water regimes on the interactions between N2O emissions and microbial processes in metal-contaminated soils is unclear. Here, we conducted a soil microcosm experiment with two water management strategies (non-flooding and flooding) and six metal addition treatments including low (2 and 200 mg kg[-1]) and high (10 and 1000 mg kg[-1]) levels of individual and combined Cd and Cu. The effects of high levels of individual Cd and Cu contamination on soil N2O emissions varied depending on water regimes, showing antagonistic effects under non-flooding conditions and synergistic effects under flooding conditions. High levels of co-contamination significantly inhibited nitrification under both water regimes, primarily due to reduced abundance of Nitrosospira. In contrast, this co-contamination decreased the abundance of Ramlibacter, thereby inhibiting denitrification and dissimilatory nitrate reduction to ammonium (DNRA) under flooding conditions. The inhibition of these key microorganisms and their mediated N-cycle processes reduced soil N2O emissions under both water regimes. This reduction was greater under flooding conditions because more N-related processes were inhibited. Metagenomic binning further indicated that Nitrosospira carried nitrifying genes, while Ramlibacter contained genes involved in denitrification, assimilatory nitrate reduction to ammonium (ANRA), and DNRA. These findings implied that both microorganisms had potential to produce N2O. Overall, water management strategies and metal contamination altered the microbial processes of N2O emissions, highlighting the importance of appropriate water management in mitigating greenhouse gas emissions from metal-contaminated paddy soils in southern China.

RevDate: 2025-05-14

Heo H, Nguyen-Dinh T, Jung MY, et al (2025)

Hydrogen-dependent dissimilatory nitrate reduction to ammonium enables growth of Campylobacterota isolates.

The ISME journal pii:8131595 [Epub ahead of print].

Dissimilatory nitrate reduction to ammonium (DNRA) is a key process used by diverse microorganisms in the global nitrogen cycle. For long, DNRA has been considered primarily as an organotrophic reaction, despite evidence that oxidation of inorganic electron donors also supports DNRA. Evidence of DNRA coupling with molecular hydrogen (H2) oxidation has been reported for several microbial isolates; however, the underlying physiology of the microbial process remains understudied. In this study, we report the isolation of two Campylobacterotastrains, Aliarcobacter butzlerihDNRA1 and Sulfurospirillumsp. hDNRA2, which grow using H2as the sole electron donor for DNRA, and physiological insights gained from a close examination of hydrogenotrophic DNRA in these isolates. In both batch and continuous cultures, DNRA sensu stricto(i.e. NO3-reduction that includes stoichiometric NO2--to-NH4+reduction) was strictly dependent on the presence of H2and exhibited stoichiometric coupling with H2oxidation, indicating that electrons required for NO2-reduction were unequivocally derived from H2. Successful chemostat incubation further demonstrated that hydrogenotrophic DNRA is viable under NO3-limiting, H2-excess conditions. Genomic and transcriptomic analyses identified group 1b [NiFe]-hydrogenase and cytochrome c552nitrite reductase as the key enzymes catalyzing hydrogenotrophic DNRA. Additionally, metagenomic surveys revealed that bacteria capable of hydrogenotrophic DNRA are taxonomically diverse and abundant in various ecosystems, particularly in the vicinity of deep-sea hydrothermal vents. These findings, integrating physiological, genomic, and transcriptomic analyses, clarify that H2can solely serve as a growth-supporting electron donor for DNRA and suggest potential significance of this microbial process in nitrogen- and hydrogen-related environmental biogeochemical cycles.

RevDate: 2025-05-14

Wang L, Chen X, Pollock NR, et al (2025)

Metagenomic analysis reveals distinct patterns of gut microbiota features with diversified functions in C. difficile infection (CDI), asymptomatic carriage and non-CDI diarrhea.

Gut microbes, 17(1):2505269.

Clostridioides difficile infection (CDI) has been recognized as a leading cause of healthcare-associated infections and a considerable threat to public health globally. Increasing evidence suggests that the gut microbiota plays a key role in the pathogenesis of CDI. The taxonomic composition and functional capacity of the gut microbiota associated with CDI have not been studied systematically. Here, we performed a comprehensive shotgun metagenomic sequencing in a well-characterized human cohort to reveal distinct patterns of gut microbiota and potential functional features associated with CDI. Fecal samples were collected from 104 inpatients, including : (1) patients with clinically significant diarrhea and positive nucleic acid amplification testing (NAAT) and received CDI treatment (CDI, n = 47); (2) patients with positive stool NAAT but without diarrhea (Carrier, n = 17); (3) patients with negative stool NAAT but with diarrhea (Diarrhea, n = 14); and (4) patients with negative stool NAAT and without diarrhea (Control, n = 26). Downstream statistical analyses (including alpha and beta diversity analysis, differential abundance analysis, correlation network analysis, and potential functional analysis) were then performed. The gut microbiota in the Control group showed higher Chao1 index (p < 0.05), while Shannon index at KEGG module level was higher in CDI than in Carrier and Control (p < 0.05). Beta diversity for species composition differed significantly between CDI vs Carrier/Control cohorts (p < 0.05). Microbial Linear discriminant analysis Effect Size and ANCOM analysis both identified 8 species (unclassified_f_Enterobacteriaceae, Veillonella_parvula, unclassified_g_Klebsiella and etc.) were enriched in CDI, Enterobacter_aerogenes was enriched in Diarrhea, Collinsella_aerofaciens, Collinsella_sp_4_8_47FAA, Collinsella_tanakaei and Collinsella_sp_CAG_166 were enriched in Control (LDA >3.0, adjusted p < 0.05). Correlation network complexity was higher in CDI with more negative correlations than in other three cohorts. Modules involved in iron complex transport system (M00240) was enriched in CDI, ABC-2 type transport system (M00254), aminoacyl-tRNA biosynthesis (M00359), histidine biosynthesis (M00026) and inosine monophosphate biosynthesis (M00048) were enriched in Carrier, ribosome (M00178 and M00179) was enriched in Diarrhea, fluoroquinolone resistance (M00729) and aminoacyl-tRNA biosynthesis (M00360) were enriched in Control (LDA > 2.5, adjusted p < 0.05). Resistance functions of acriflavine and glycylcycline were enriched in CDI, while resistance function of bacitracin was enriched in Carrier (LDA > 3.0, adjusted p < 0.05), and the contributions of phylum and species to resistance functions differed among the four groups. Our results reveal alterations of gut microbiota composition and potential functions among four groups of differential colonization/infection status of Clostridioides difficile. These findings support the potential roles of gut microbiota and their potential functions in the pathogenesis of CDI.

RevDate: 2025-05-14

Baba Y, Tsuge D, R Aoki (2025)

Enhancement of carbohydrate metabolism by probiotic and prebiotic intake promotes short-chain fatty acid production in the gut microbiome: A randomized, double-blind, placebo-controlled crossover trial.

Bioscience, biotechnology, and biochemistry pii:8131516 [Epub ahead of print].

Short-chain fatty acids (SCFAs) are thought to be a key factor in the health benefits of prebiotics and probiotics. This study investigated the effect of Bifidobacterium animalis subsp. lactis GCL2505 and inulin (BL+IN) on fecal SCFAs and gut microbial composition and function. A placebo-controlled, randomized, double-blind, crossover study was conducted with 120 participants. Two weeks of BL+IN intake significantly increased acetate, propionate, and butyrate concentrations and Bifidobacterium abundance compared to placebo. Functional analysis of the gut metagenome showed enrichment of genes associated with carbohydrate and amino acid metabolism, suggesting an enhanced capacity for SCFA production. A responder was defined as a participant with increased fecal SCFAs after BL+IN consumption. Responder metagenomes exhibited greater enrichment of genes involved in SCFA production and carbohydrate metabolism. In conclusion, short-term BL+IN ingestion may benefit healthy adults by increasing fecal SCFAs through influencing the composition and functional activation of SCFA-associated pathways in the gut microbiome.

RevDate: 2025-05-14

Martin Říhová J, Vodička R, V Hypša (2025)

An obligate symbiont of Haematomyzus elephantis with a strongly reduced genome resembles symbiotic bacteria in sucking lice.

Applied and environmental microbiology [Epub ahead of print].

The parvorder Rhynchophthirina with a single genus Haematomyzus is a small group of ectoparasites of unclear phylogenetic position, related to sucking and chewing lice. Previous screening based on the 16S rRNA gene indicated that Haematomyzus harbors a symbiotic bacterium whose DNA exhibits a strong shift in nucleotide composition typical of obligate mutualistic symbionts in insects. Within Phthiraptera, the smallest known genomes are found in the symbionts associated with sucking lice, which feed exclusively on mammal blood, compared to the generally larger genomes of the symbionts inhabiting chewing lice, which feed on skin derivatives. In this study, we investigate the genome characteristics of the symbiont associated with Haematomyzus elephantis. We sequenced and assembled the H. elephantis metagenome, extracted a genome draft of its symbiotic bacterium, and showed that the symbiont has a significantly reduced genome, which is with 0.39 Mbp the smallest genome among the symbionts known from Phthiraptera. Multigenic phylogenetic analysis places the symbiont into one of three clusters composed of long-branched symbionts from other insects. More specifically, it clusters together with symbionts from several other sucking lice and also with Wigglesworthia glossinidia, an obligate symbiont of tsetse flies. Consistent with the dramatic reduction of its genome, the H. elephantis symbiont lost many metabolic capacities. However, it retained functional pathways for four B vitamins, a trait typical for symbionts in blood-feeding insects. Considering genomic, metabolic, and phylogenetic characteristics, the new symbiont closely resembles those known from several sucking lice rather than chewing lice.IMPORTANCERhynchophthirina is a unique small group of permanent ectoparasites that is closely related to both sucking and chewing lice. These two groups of lice differ in their morphology, ecology, and feeding strategies. As a consequence of their different dietary sources, i.e., mammals' blood vs vertebrate skin derivatives, they also exhibit distinct patterns of symbiosis with obligate bacterial symbionts. While Rhynchophthirina shares certain traits with sucking and chewing lice, the nature of its obligate symbiotic bacterium and its metabolic role is not known. In this study, we assemble the genome of symbiotic bacterium from Haematomyzus elephantis (Rhynchophthirina), demonstrating its close similarity and phylogenetic proximity to several symbionts of sucking lice. The genome is highly reduced (representing the smallest genome among louse-associated symbionts) and exhibits a significant loss of metabolic pathways. However, similar to other sucking louse symbionts, it retains essential pathways for the synthesis of several B vitamins.

RevDate: 2025-05-14

Geonczy SE, Hillary LS, Santos-Medellín C, et al (2025)

Patchy burn severity explains heterogeneous soil viral and prokaryotic responses to fire in a mixed conifer forest.

mSystems [Epub ahead of print].

UNLABELLED: Effects of fire on soil viruses and virus-host dynamics are largely unexplored, despite known microbial contributions to biogeochemical processes and ecosystem recovery. Here, we assessed how viral and prokaryotic communities responded to a prescribed burn in a mixed conifer forest. We sequenced 91 viral-size fraction metagenomes (viromes) and 115 16S rRNA gene amplicon libraries from 120 samples: four samples at five timepoints (two before fire and three after fire) at six sites (four treatment, two control). We hypothesized that compositional differences would be most significant between burned and unburned soils, but instead, plot location best distinguished viral communities, more than treatment (burned or not), depth (0-3 or 3-6 cm), or timepoint. For both viruses and prokaryotes, some burned communities resembled unburned controls, while others were significantly different, revealing heterogeneous responses to fire. These patterns were explained by burn severity, here defined by soil chemistry. Viral but not prokaryotic richness decreased significantly with burn severity, and low viromic DNA yields indicated substantial loss of viral biomass at higher severity. The relative abundances of Firmicutes, Actinobacteriota, and the viruses predicted to infect them increased significantly with burn severity, suggesting survival and viral infection of these fire-responsive and potentially spore-forming taxa. The degree of burn severity experienced by each patch of soil, rather than burn status alone, differed over mere meters in the same fire. Therefore, our analyses highlight the importance of high-resolution, paired biogeochemical data to explain soil community responses to fire.

IMPORTANCE: The impact of fire on the soil microbiome, particularly on understudied soil viral communities, warrants investigation, given known microbial contributions to biogeochemical processes and ecosystem recovery. Here, we collected 120 soil samples before and after a prescribed burn in a mixed conifer forest to assess the impacts of this disturbance on soil viral and prokaryotic communities. We show that simple categorical comparisons of burned and unburned areas were insufficient to reveal the underlying community response patterns. The patchy nature of the fire (indicated by soil chemistry data) led to significant changes in viral and prokaryotic community composition in areas of high burn severity, while communities that experienced lower burn severity were indistinguishable from those in unburned controls. Our results highlight the importance of considering highly resolved burn severity and biogeochemical measurements, even in nearby soils after the same fire, in order to understand soil microbial responses to prescribed burns.

RevDate: 2025-05-14

Li J, Zheng K, Ding W, et al (2025)

Healthy and moribund Zhikong scallops (Chlamys farreri) developed different viral communities during a mass mortality event.

mSystems [Epub ahead of print].

UNLABELLED: Viral assemblages of scallops are still relatively unknown. Here, metagenomic analysis was used to study virus communities in the gut of scallops to establish the first scallop virome data set (SVD); this contains 7,447 viral operational taxonomic units. Protein-sharing networks and phylogenetic analyses demonstrated the high diversity and novelty of the SVD, which is very different from viromes from other habitats. Potentially pathogenic viruses are prevalent in the gut of scallops. In particular, the novel smacoviruses were identified, indicating that scallops may be a potential hotspot for this viral group. Inference of virus-host associations found extensive interactions between viruses and major prokaryotic lineages. Intriguingly, moribund scallops showed a higher diversity of auxiliary metabolic genes (AMGs) related to amino acid metabolism and cofactor and vitamin genes, while healthy scallops had fewer AMGs, with those present focusing on secondary metabolite biosynthesis and carbohydrate metabolism. These findings provide the first landscape of scallop gut viruses based on metagenomes and highlight the potential roles of diverse and unique gut viruses for the health of filter-feeding bivalves.

IMPORTANCE: This study uses metagenome sequencing to establish the first scallop virome database. The study reveals previously unknown diversity of scallop-associated viruses and provides insights into links between disease status and viral diversity and genome content. The study will interest many aquatic virologists and could have important implications in managing marine resources.

RevDate: 2025-05-14

Crouch AL, Severance BM, Creary S, et al (2025)

Altered nasal and oral microbiomes define pediatric sickle cell disease.

mSphere [Epub ahead of print].

UNLABELLED: Sickle cell disease (SCD) is a chronic blood disorder that disrupts multiple organ systems and can lead to severe morbidity. Persistent and acute symptoms caused by immune system dysregulation in individuals with SCD could contribute to disease either directly or indirectly via dysbiosis of commensal microbes and increased susceptibility to infection. Here, we explored the nasal and oral microbiomes of children with SCD (cwSCD) to uncover potential dysbiotic associations with the blood disorder. Microbiota collected from nasal and oral swabs of 40 cwSCD were compared to eight healthy siblings using shotgun metagenomic sequencing. Commensal taxa were present at similar levels in the nasal and oral microbiome of both groups. However, the nasal microbiomes of cwSCD contained a higher prevalence of Pseudomonadota species, including pathobionts such as Yersinia enterocolitica and Klebsiella pneumoniae. Furthermore, the oral microbiome of cwSCD displayed lower α-diversity and fewer commensal and pathobiont species compared to the healthy siblings. Thus, subtle but notable shifts seem to exist in the nasal and oral microbiomes of cwSCD, suggesting an interaction between SCD and the microbiome that may influence health outcomes.

IMPORTANCE: The oral and nasal cavities are susceptible to environmental exposures including pathogenic microbes. In individuals with systemic disorders, antibiotic exposure, changes to the immune system, or changes to organ function could influence the composition of the microbes at these sites and the overall health of individuals. Children with sickle cell disease (SCD) commonly experience respiratory infections, such as pneumonia or sinusitis, and may have increased susceptibility to infection because of disrupted microbiota at these body sites. We found that children with SCD (cwSCD) had more pathobiont bacteria in the nasal cavity and reduced bacterial diversity in the oral cavity compared to their healthy siblings. Defining when, why, and how these changes occur in cwSCD could help identify specific microbial signatures associated with susceptibility to infection or adverse outcomes, providing insights into personalized treatment strategies and preventive measures.

RevDate: 2025-05-14

Gilbert NE, Kimbrel JA, Samo TJ, et al (2025)

A bloom of a single bacterium shapes the microbiome during outdoor diatom cultivation collapse.

mSystems [Epub ahead of print].

Algae-dominated ecosystems are fundamentally influenced by their microbiome. We lack information on the identity and function of bacteria that specialize in consuming algal-derived dissolved organic matter in high algal density ecosystems such as outdoor algal ponds used for biofuel production. Here, we describe the metagenomic and metaproteomic signatures of a single bacterial strain that bloomed during a population-wide crash of the diatom, Phaeodactylum tricornutum, grown in outdoor ponds. 16S rRNA gene data indicated that a single Kordia sp. strain (family Flavobacteriaceae) contributed up to 93% of the bacterial community during P. tricornutum demise. Kordia sp. expressed proteins linked to microbial antagonism and biopolymer breakdown, which likely contributed to its dominance over other microbial taxa during diatom demise. Analysis of accompanying downstream microbiota (primarily of the Rhodobacteraceae family) provided evidence that cross-feeding may be a pathway supporting microbial diversity during diatom demise. In situ and laboratory data with a different strain suggested that Kordia was a primary degrader of biopolymers during algal demise, and co-occurring Rhodobacteraceae exploited degradation molecules for carbon. An analysis of 30 Rhodobacteraceae metagenome assembled genomes suggested that algal pond Rhodobacteraceae commonly harbored pathways to use diverse carbon and energy sources, including carbon monoxide, which may have contributed to the prevalence of this taxonomic group within the ponds. These observations further constrain the roles of functionally distinct heterotrophic bacteria in algal microbiomes, demonstrating how a single dominant bacterium, specialized in processing senescing or dead algal biomass, shapes the microbial community of outdoor algal biofuel ponds.IMPORTANCEAquatic biogeochemical cycles are dictated by the activity of diverse microbes inhabiting the algal microbiome. Outdoor biofuel ponds provide a setting analogous to aquatic algal blooms, where monocultures of fast-growing algae reach high cellular densities. Information on the microbial ecology of this setting is lacking, and so we employed metagenomics and metaproteomics to understand the metabolic roles of bacteria present within four replicated outdoor ponds inoculated with the diatom Phaeodactylum tricornutum. Unexpectedly, after 29 days of cultivation, all four ponds crashed concurrently with a "bloom" of a single taxon assigned to the Kordia bacterial genus. We assessed how this dominant taxon influenced the chemical and microbial fate of the ponds following the crash, with the hypothesis that it was primarily responsible for processing senescent/dead algal biomass and providing the surrounding microbiota with carbon. Overall, these findings provide insight into the roles of microbes specialized in processing algal organic matter and enhance our understanding of biofuel pond microbial ecology.

RevDate: 2025-05-14

Ragupathy V, Kelley K, I Hewlett (2025)

Near-complete torque teno virus (TTV) genome identified in a blood donor infected with hepatitis B virus (HBV).

Microbiology resource announcements [Epub ahead of print].

We have identified a near full-length torque teno virus (TTV) genome sequence in plasma from a blood donor infected with hepatitis B virus. The consensus sequence of TTV was extracted from Nanopore metagenomic sequencing. The identified TTV open reading frame 1 is 3,062 nucleotides (nt) long and shares 90%-100% identity with other human TTVs.

RevDate: 2025-05-14
CmpDate: 2025-05-14

Li M, Chen J, Zhang L, et al (2025)

Clinicopathological characteristics and diagnostic performance of metagenomic pathogen detection technology in mycobacterial infections among HIV patients.

Frontiers in cellular and infection microbiology, 15:1584189.

BACKGROUND: Mycobacterial infections represent a major cause of morbidity and mortality in HIV-infected individuals. This study evaluated diagnostic techniques for mycobacterial identification and compared clinicopathological features between HIV-positive and HIV-negative patients.

METHODS: We analyzed 88 tissue samples (with 41 matched blood and 28 sputum samples) using histopathology (HE and acid-fast staining), bacterial culture, MTB-PCR (sputum/biopsy), PCR-reverse dot blot hybridization (RDBH), and metagenomic pathogen detection technology (MetaPath™). Logistic regression analyses were performed to identify factors affecting detection rates.

RESULTS: Mycobacterial infection was detected in 95.5% (84/88) of patients. Among HIV-positive patients (n=63), 46% (29/63) had Mycobacterium tuberculosis (MTB) infections, and 44% (28/63) had non-tuberculous mycobacteria (NTM) infections, significantly higher than the 20% (5/25) NTM rate in HIV-negative patients. Univariate analysis identified HIV-positive status (p=0.009), lymph node involvement (p=0.020), and positive MetaPath™ results (p=0.002) as significant predictors of detection, while multivariate analysis confirmed these as independent factors (p=0.036; p=0.042; p=0.006). Lymph nodes were the most common infection site in HIV-positive patients (42.9%, 27/63), while lung tissue predominated in HIV-negative patients (48%, 12/25). MetaPath™ demonstrated superior sensitivity and specificity for detecting both MTB and NTM. Biopsy samples provided higher diagnostic accuracy than sputum or blood for lung and lymph node infections, but not for brain. In HIV-positive patients, NTM infections showed significantly more granuloma formation (p=0.032) and foam cells (p=0.005), but less necrosis (p=0.0005) compared to MTB infections. No significant differences were observed in HIV-negative patients.

CONCLUSIONS: MetaPath™ is a highly effective diagnostic tool for mycobacterial infections, particularly in tissue biopsies. HIV-positive status, lymph node involvement, and MetaPath™ positivity independently predict mycobacterial detection. HIV-positive patients exhibit distinct clinicopathological features, emphasizing the need for tailored diagnostic and therapeutic approaches based on immune status.

RevDate: 2025-05-14

Pu T, Tan Y, Zhao Y, et al (2025)

Effect of Seasonal Variations on Soil Microbial, Extracellular Enzymes, and Ecological Stoichiometry in Tea Plantations.

Ecology and evolution, 15(5):e71362.

Tea plantations are important agricultural ecosystems in karst areas, yet the seasonal dynamics of soil microbial communities, functional genes, and extracellular enzyme activities (EEA) under different management practices remain poorly understood. This study investigated organic (HY), pollution-free (TS), and conventional (XY) tea plantations in Weng'an County, Southwest China, during the spring (April) and autumn (August) tea seasons via metagenomics and stoichiometric analyses. Seasonal variations significantly altered the soil physicochemical properties (e.g., SOC, TN, and TP) and EEA (p < 0.05), with higher C-acquiring enzyme activity in autumn and elevated soil C:N:P ratios in spring. The soil extracellular enzyme stoichiometry (EES C:N:P) deviated from the theoretical 1:1:1 ratio, indicating that microbial metabolism was constrained by soil resource availability rather than homeostasis. Phosphorus limitation (vector angle > 45°) persisted across seasons, contradicting initial hypotheses, with acid phosphatase (ACP) activity and EES C:P identified as critical drivers. Random forest (RF) and structural equation modeling (SEM) revealed that the spring season had stronger impacts on microbial communities and functional genes, with the soil TN, C:N, NAG, ACP, and EES C:P ratios as key predictors. Compared with conventional practices, organic management enhances microbial diversity and functional redundancy, buffering seasonal fluctuations. These findings highlight the interplay between seasonal climatic shifts and agricultural practices regulating soil nutrient cycling and microbial adaptation. Strategic interventions-such as spring carbon supplementation, autumn organic phosphorus fertilization, and intercropping-are proposed to optimize microbial resilience and ecosystem stability in fragile karst tea plantations. This study provides novel insights into soil ecological stoichiometry and microbial metabolic strategies, offering a reference for the sustainable management of agroecosystems in karst areas.

RevDate: 2025-05-14

Liu L, Wang Z, Luo C, et al (2025)

Beneficial soil microbiome profiles assembled using tetramycin to alleviate root rot disease in Panax notoginseng.

Frontiers in microbiology, 16:1571684.

BACKGROUND: Root rot disease is a major threat to the sustainable production of Panax notoginseng. Tetramycin has a broad-spectrum fungicidal efficacy, low toxicity, and high efficiency, However, the prevention and control of root rot disease of P. notoginseng and the specific mechanism of action are still unclear.

METHODS: In this paper, a combination of indoor and pot experiments was used to assess the effectiveness of tetramycin at alleviating root rot disease challenges encountered by P. notoginseng. Amplicon sequencing, metagenomic analysis with microbial verification were used to investigate the microecological mechanisms underlying tetramycin's ability to reduce soil biological barriers.

RESULTS: We found that tetramycin significantly inhibited mycelial growth and spore germination of pathogenic fungi. Tetramycin, T2 (1000×) and T3 (500×), applied to continuous cropping soil, increased the seedling survival rates of P. notoginseng. Additionally, tetramycin reduced fungal α-diversity and shifted the fungal community assembly from deterministic to stochastic process. The microbial functions influenced by tetramycin were primarily associated with antibiotic synthesis and siderophore synthesis. Antibiotic efflux and inactivation have also been identified as the main resistance mechanisms. Microbial verification results showed that the artificially assembled tetramycin-regulated microbial community could indeed alleviate the occurrence of diseases. Furthermore, the cross-kingdom synthetic community assembled by the three key strains (Pseudomonas aeruginosa, Variovorax boronicumulans, and Cladosporium cycadicola) significantly improved the control of root rot disease and promoted plant growth.

DISCUSSION: This study provides novel insights into developing efficient biological control strategies and elucidates the role and mechanism of tetramycin in modulating soil microflora assembly to strengthen host disease resistance.

RevDate: 2025-05-14

Cao K, Shi P, Xu X, et al (2025)

Self-Inhibition Effects of Litter-Mediated Plant-Phyllosphere Feedback on Seedling Growth in Invasive and Native Congeneric Species.

Plants (Basel, Switzerland), 14(9): pii:plants14091355.

Plant-phyllosphere feedback (PPF) is an ecological process in which phyllosphere microbiota, originating from plant litter, are transmitted via aerosols and subsequently influence the growth of conspecific or heterospecific plants. However, the cross-species generality of this mechanism and its role in invasive plant success remain to be fully elucidated. This study systematically examined PPF effects using three invasive/native congeneric plant pairs from distinct families (Phytolaccaceae, Asteraceae, and Amaranthaceae) in Jiangxi Province, China. Key findings include the following: (1) Wide conspecific negative feedback across families, with four of six species exhibiting 6.2-12.7% biomass reduction under their own litter treatments (p < 0.05). (2) Comparable feedback intensity between invasive and native species, as indicated by average pairwise indices (invasive I = -0.05 vs. native I = -0.04; p = 0.15). Notably, the invasive species Phytolacca americana uniquely showed a positive biomass response (+7.1%), though underlying mechanisms (phytochemical or microbial) were not investigated. (3) Lack of correlation between PPF strength and plant functional traits or phylogenetic distance, as indicated by Mantel tests (p > 0.8), in contrast to the trait/phylogeny associations commonly observed in soil feedback systems. This study provided the first evidence of PPF universality across multiple plant families-previously documented only within Asteraceae-and highlights the potential microbial-mediated advantages in plant invasions. Future research should integrate spatiotemporal metagenomic and metabolomic approaches to decipher the dynamic pathogen/microbe networks and their phytochemical interactions.

RevDate: 2025-05-14
CmpDate: 2025-05-14

Zhou L, Li J, Ding C, et al (2025)

Mechanistic Advances in Hypoglycemic Effects of Natural Polysaccharides: Multi-Target Regulation of Glycometabolism and Gut Microbiota Crosstalk.

Molecules (Basel, Switzerland), 30(9): pii:molecules30091980.

Natural polysaccharides (NPs), as a class of bioactive macromolecules with multitarget synergistic regulatory potential, exhibit significant advantages in diabetes intervention. This review systematically summarizes the core hypoglycemic mechanisms of NPs, covering structure-activity relationships, integration of the gut microbiota-metabolism-immunity axis, and regulation of key signaling pathways. Studies demonstrate that the molecular weight, branch complexity, and chemical modifications of NPs mediate their hypoglycemic activity by influencing bioavailability and target specificity. NPs improve glucose metabolism through multiple pathways: activating insulin signaling, improving insulin resistance (IR), enhancing glycogen synthesis, inhibiting gluconeogenesis, and regulating gut microbiota homeostasis. Additionally, NPs protect pancreatic β-cell function via the nuclear factor E2-related factor 2 (Nrf2)/Antioxidant Response Element (ARE) antioxidant pathway and Toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) anti-inflammatory pathway. Clinical application of NPs still requires overcoming challenges such as resolving complex structure-activity relationships and dynamically integrating cross-organ signaling. Future research should focus on integrating multi-omics technologies (e.g., metagenomics, metabolomics) and organoid models to decipher the cross-organ synergistic action networks of NPs, and promote their translation from basic research to clinical applications.

RevDate: 2025-05-14
CmpDate: 2025-05-14

Žukienė G, Narutytė R, V Rudaitis (2025)

Association Between Vaginal Microbiota and Cervical Dysplasia Due to Persistent Human Papillomavirus Infection: A Systematic Review of Evidence from Shotgun Metagenomic Sequencing Studies.

International journal of molecular sciences, 26(9): pii:ijms26094258.

The role of vaginal dysbiosis in the progression of human papilloma virus (HPV) associated cervical lesions has gained attention in recent years. While many studies use 16S rRNA gene sequencing for microbiota analysis, shotgun metagenomic sequencing offers higher taxonomic resolution and insights into microbial gene functions and pathways. This systematic review evaluates the relationship between compositional and functional changes in the vaginal microbiome during HPV infection and cervical lesion progression. A literature search was performed according to PRISMA guidelines in PubMed, Web of Science, Scopus, and ScienceDirect databases. Seven studies utilizing metagenomic sequencing in patients with HPV infection or HPV-associated cervical lesions were included. Progression from HPV infection to cervical lesions and cancer was associated with a reduction in Lactobacillus species (particularly Lactobacillus crispatus) and an enrichment of anaerobic and pathogenic species, especially Gardnerella vaginalis. Heterogeneous enriched metabolic pathways were also identified, indicating functional shifts during lesion progression. As most studies were conducted in Asia, further research in diverse regions is needed to improve the generalizability of findings. Future studies employing metagenomic sequencing may help identify biomarkers for early pre-cancerous lesions and clarify the role of vaginal microbiota in persistent HPV infection and cervical dysplasia.

RevDate: 2025-05-14
CmpDate: 2025-05-14

Chakraborty N, Holmes-Hampton G, Rusling M, et al (2025)

Delayed Impact of Ionizing Radiation Depends on Sex: Integrative Metagenomics and Metabolomics Analysis of Rodent Colon Content.

International journal of molecular sciences, 26(9): pii:ijms26094227.

There is an escalating need to comprehend the long-term impacts of nuclear radiation exposure since the permeation of ionizing radiation has been frequent in our current societal framework. A system evaluation of the microbes that reside inside a host's colon could meet this knowledge gap since the microbes play major roles in a host's response to stress. Indeed, our past study suggested that these microbes might break their symbiotic association with moribund hosts to form a pro-survival condition exclusive to themselves. In this study, we undertook metagenomics and metabolomics assays regarding the descending colon content (DCC) of adult mice. DCCs were collected 1 month and 6 months after 7 Gy or 7.5 Gy total body irradiation (TBI). The assessment of the metagenomic diversity profile in DCC found a significant sex bias caused by TBI. Six months after 7.5 Gy TBI, decreased Bacteroidetes were replaced by increased Firmicutes in males, and these alterations were reflected in the functional analysis. For instance, a larger number of networks linked to small chain fatty acid (SCFA) synthesis and metabolism were inhibited in males than in females. Additionally, bioenergy networks showed regression dynamics in females at 6 months post-TBI. Increased accumulation of glucose and pyruvate, which are typical precursors of beneficial SCFAs coupled with the activated networks linked to the production of reactive oxygen species, suggest a cross-sex energy-deprived state. Overall, there was a major chronic adverse implication in male mice that supported the previous literature in suggesting females are more radioresistant than males. The sex-biased chronic effects of TBI should be taken into consideration in designing the pertinent therapeutics.

RevDate: 2025-05-14
CmpDate: 2025-05-14

Krivonos DV, Fedorov DE, Konanov DN, et al (2025)

Pike: OTU-Level Analysis for Oxford Nanopore Amplicon Metagenomics.

International journal of molecular sciences, 26(9): pii:ijms26094168.

The Oxford Nanopore platform and nanopore sequencing are gaining increasing popularity in modern metagenomic research. However, there is a limited set of dedicated tools for analyzing this type of data. The tools used for nanopore amplicon sequencing data analysis often provide only taxonomy annotation without OTU sequence assembly. Conversely, tools that facilitate OTU assembly are constrained in their analysis to long reads, such as the V1-V9 regions of 16S rRNA for bacterial community studies or the full-length ITS cluster (ITS1-5.8S-ITS2) for fungal community studies. In other cases, researchers propose their own solutions without dedicated tools. In this paper, we present Pike, a novel tool for analyzing Oxford Nanopore amplicon sequencing data. Pike allows analysis without amplicon size limitations and allows de novo assembly of OTU sequences. In our research, we created mock communities of fungi and bacteria, which we then used to demonstrate the efficiency of our algorithm. Furthermore, we validated the algorithm using externally available data. We also compared our approach with similar ones to show its applicability.

RevDate: 2025-05-13
CmpDate: 2025-05-14

Ma Y, Jiang J, Yang Z, et al (2025)

Changes of gastric microflora and metabolites in patients with chronic atrophic gastritis.

Journal of translational medicine, 23(1):537.

BACKGROUND: Chronic atrophic gastritis (CAG) is related to the body's microbial and metabolic systems. Combined studies of microbiome and metabolomics can clarify the mechanisms of disease occurrence and progression. We used 16S rRNA sequencing, metagenomics sequencing and metabolomics sequencing to depict the landscapes of bacterium and metabolites, construct correlation networks of different bacterium and metabolites describe potential pathogenic mechanisms of chronic atrophic gastritis.

METHODS: The gastric juices of 30 non-atrophic gastritis (NAG) patients and 30 CAG patients were collected. Gastric microflora was analyzed by 16S rRNA sequencing and metagenomics sequencing. Gastric metabolites were analyzed by LC-MS analysis. Different bioinformatics methods were used to analyze the data of microbiome and metabolome, and to analyze the relationship between them.

RESULTS: In atrophic gastritis, bacteria diversity decreased. The genera with a mean decrease in Gini greater than 1.5 included peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides. KEGG pathway included renal cell carcinoma, proximal tubule bicarbonate reclamation, citrate cycle and aldosterone synthesis and secretion with significant enrichment of differential metabolites. Peptostreptococcus, fusobacterium, prevotella and sphingomonas were in pivot positions of the correlation network of differential metabolites and differential bacterium. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism were enriched in chronic atrophic gastritis based on the metagenomic sequencing data.

CONCLUSION: Peptostreptococcus, fusobacterium, prevotella, sphingomonas and bacteroides were the essential features that distinguish atrophic gastritis from non-atrophic gastritis, and caused disease by altering various metabolic pathways. Viral carcinogenesis, glycine serine and threonine metabolism, RNA polymerase, galactose metabolism and retinol metabolism may be related to the occurrence and progression of CAG.

LOAD NEXT 100 CITATIONS

ESP Quick Facts

ESP Origins

In the early 1990's, Robert Robbins was a faculty member at Johns Hopkins, where he directed the informatics core of GDB — the human gene-mapping database of the international human genome project. To share papers with colleagues around the world, he set up a small paper-sharing section on his personal web page. This small project evolved into The Electronic Scholarly Publishing Project.

ESP Support

In 1995, Robbins became the VP/IT of the Fred Hutchinson Cancer Research Center in Seattle, WA. Soon after arriving in Seattle, Robbins secured funding, through the ELSI component of the US Human Genome Project, to create the original ESP.ORG web site, with the formal goal of providing free, world-wide access to the literature of classical genetics.

ESP Rationale

Although the methods of molecular biology can seem almost magical to the uninitiated, the original techniques of classical genetics are readily appreciated by one and all: cross individuals that differ in some inherited trait, collect all of the progeny, score their attributes, and propose mechanisms to explain the patterns of inheritance observed.

ESP Goal

In reading the early works of classical genetics, one is drawn, almost inexorably, into ever more complex models, until molecular explanations begin to seem both necessary and natural. At that point, the tools for understanding genome research are at hand. Assisting readers reach this point was the original goal of The Electronic Scholarly Publishing Project.

ESP Usage

Usage of the site grew rapidly and has remained high. Faculty began to use the site for their assigned readings. Other on-line publishers, ranging from The New York Times to Nature referenced ESP materials in their own publications. Nobel laureates (e.g., Joshua Lederberg) regularly used the site and even wrote to suggest changes and improvements.

ESP Content

When the site began, no journals were making their early content available in digital format. As a result, ESP was obliged to digitize classic literature before it could be made available. For many important papers — such as Mendel's original paper or the first genetic map — ESP had to produce entirely new typeset versions of the works, if they were to be available in a high-quality format.

ESP Help

Early support from the DOE component of the Human Genome Project was critically important for getting the ESP project on a firm foundation. Since that funding ended (nearly 20 years ago), the project has been operated as a purely volunteer effort. Anyone wishing to assist in these efforts should send an email to Robbins.

ESP Plans

With the development of methods for adding typeset side notes to PDF files, the ESP project now plans to add annotated versions of some classical papers to its holdings. We also plan to add new reference and pedagogical material. We have already started providing regularly updated, comprehensive bibliographies to the ESP.ORG site.

Electronic Scholarly Publishing
961 Red Tail Lane
Bellingham, WA 98226

E-mail: RJR8222 @ gmail.com

Papers in Classical Genetics

The ESP began as an effort to share a handful of key papers from the early days of classical genetics. Now the collection has grown to include hundreds of papers, in full-text format.

Digital Books

Along with papers on classical genetics, ESP offers a collection of full-text digital books, including many works by Darwin and even a collection of poetry — Chicago Poems by Carl Sandburg.

Timelines

ESP now offers a large collection of user-selected side-by-side timelines (e.g., all science vs. all other categories, or arts and culture vs. world history), designed to provide a comparative context for appreciating world events.

Biographies

Biographical information about many key scientists (e.g., Walter Sutton).

Selected Bibliographies

Bibliographies on several topics of potential interest to the ESP community are automatically maintained and generated on the ESP site.

ESP Picks from Around the Web (updated 28 JUL 2024 )